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PREFACE

This is the second of two volumes constituting the final

technical report for a study entitled "Algorithmic Complexity".

"The work was performed in support of the Information Sciences

Division, Rome Air Development Center, under U.S. Air Force

Systems Command contract F30602-79-C-0124. The duration of the

project was from June 1979 through August 1981.

The research described herein was performed by members of

the Department of Computer Science and Experimental Statistics

at the University of Rhode Island. Dr. Edmund A. Lamagna served

as Principal Investigator for this effort. Dr. Leonard 3. Bass

was Co-Principal Investigator. Three graduate assistants --

Messrs. Lyle A. Anderson, Ralph E. Bunker, and Philip J. Janus

-- also worked on the project. Technical guidance was provided

by Mr. Joseph P. Cavano, RADC Project Engineer.

The study consists of eight parts, whose titles are:

1. Measures of Algorithmic Efficiency: An Overview (Lamagna)

! 2. The Performance of Algorithms: A Research Plan (Lamagna,
Bass, and Anderson)

3. Fast Computer Algebra (Lamagna)

4. Systematic Analysis of Algorithms (Anderson)

5. Adaptive Methods for Unknown Distributions in Distributive
Partitioning Sorting (Janus)

6. Expected Behavior of. Approximation Algorithms for the
Euclidean Traveling Salesman Problem (Lamagna with E. J.

Carney and P. V. Kamat)

7. Data Base Access Methods (Bass)

8. An Experimental Evaluation. of the Frame Memory Model of a
Oata Base Structure (Bunker and Bass)

Volume I contains Parts 1 and 2, coinprising a general

introduction to the entire series and a research plan. Volume

II contains the remaining six parts, describing the results of

several technical investigations which were conducted.
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ALGORITHMIC COMPLEXITY
Part 3

by

Edmund A. Lamagna

FAST COMPUTER ALGEBRA

Abstract

New algorithm for solving familiar algebraic problem on computers have

recently bden devised. These methods are more efficient than classical

ones for large problem sizes, and some can be shown to be optimal. This

tutorial illustrates these ideas by examining the problems of raising a

number to a pover, evaluating a polynomial at one or several points,

and multiplying polynomials and matrices,

This work wms supported by Air Force Systm Command, Rome Air D.evlopumt

Ceater, under Contract No. 1P3062-T9-C-O124.
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FAST COMPUTER ALGEBRA

The astounding speed of modern digital computers has made it possible to

perform computations of a size that would be completely infeasible without

their use. For example, the fastest computers of today can solve a system

of one hundred simultaneous linear equations in a hundred unknowns in a

matter of seconds. If a person could perform one arithmetic operation, slich

as an addition or multiplication, per minute and worked on the problem non-stop

using the classical method of Gaussian elimination, it would take almost one

year to C.Jtain the same result. In fact, under the same assumptions, it

would take a person just over a day to solve a system or only a dozen equations.

The calculations of our tireless human computer are, of course, far uie

susceptible to error.

Before the advent or digital computers, the sizes of most algebraic and

numeric problems which could be solved was severely limited although it was

known how to solve large problems in principle. Because the sizes of the

problem tackled by hand were small, applying a simple formula usually sufficed

to produce the desired results. Little attention was generally paid to finding

computationally efficient, but perhaps longer, formulas or methods of calculation

During the past decade, a new branch of mathematical computer science

known as analysis of algorithms and computational complexity has blossomed.

The goal of this field is to compare the relative efficiency of alternative

techniques for solving a problem and, whenever possible, to prove that some

method is the best one could hope to find. As a result of this work, a

number of surprising new algorithms, or computational procedures, have been

developed. These techniques sometimes seem counterintuitive at first and often

do not outperform the classical methods for small problem sizes. However.# as

the problem size increases, the imprv-iement in execution speed on a computer

can be quite dramatic. 3-1



As a simple example of such a result, we consider the problem of multiplying

two complex numbers. A single complex number is generally denoted by a pair of

values representing its real and imaginary parts. The product of two such

numbers a+bi and c4di is given by the formula (ac-bd)+(ad+b), where i is

/'-7. Suppose we are given a and b, representing the real and imaginary part of

the first complex number, and c and d, representing the corresponding parts of

the second number, and are asked to calculate the real and imaginary parts of

their product. Computers represent and operate on complex numbers in just

this manner. Applying the formula for complex product, four multiplications

(viz., ac, bd, a4, and be), one subtraction (viz., ac-bd), and one addition

(viz., ad+bc) are used.

An alternative method for computing the result is as follows. First add

a to b and c to d, multiplying these two sums: (a+b).(c+d)ac4ad+bc+bd-m I.
1

Next form the two products m =a'c and m =b.d. The real part of the complex2 3

product can be formed as m -m and the imaginary part as m -m -m . This method
2S 1..23

uses three multiplications, two additions, and three subtractions. Although

this new method performs eight operations to the classical method's six, it

does use one fewer multiplication. But a multiplication operation executes

far more slowly than either an addition or subtraction on a computer. (Additions

and subtractions execute at comparable speeds.) If a multiplication takes a

not uncommon factor of ten times longer, the new procedure for complex product

will run about 20% faster than the classical one. Due to the speed of digital

computers, this improvement will go unnoticed if only a few complex products

are to be taken, however it can become increasingly important as the amount of

work to be done grows.
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In order to compare the efficiencies of alternative algorithms for

some algebraic problem, we will have to make more precise just what types

of computations will be allowed. Researchers who study the complexity of

algebraic problems uae a model of computation called a "straight-line

algorithm". Within this framework we are given a set of input data plus

any constants we choosce to work with. Algorithms consist of a sequence

of steps in which arithmetic operations are applied to the input data,

constants, or the results obtained in previous computation steps. Figure

2 shovs two straight-line algorithms which evaluate the polynomial

p(aX)=X'+IX 2 +5x+2 given the value of the variable x as data.

To assess the efficiency of an algorithm, we will count either the

total number of arithmetic operations performed or the number of some

specific type (e.g., multiplications). This model of computation ignores

many practical-.considerations which will affect the running time of an

algorithm if it is actually programmed to be executed on a computer. In a

programed realization, the operations to be performed are systematically

specified using loops and tests so that the program will work for all

input sizes. The straight-line algorithm paradigm neglects the cost of

the overhead associated with loop control and testing operations, as well

as the time required to fetch and store information inside a computer 's

memory. These costs can vary greatly from computer to computer, and will

not even be the same for two programming language compilers implemented on

the same machine. Fortunately the overall times of the algorithms studiedI

are driven primarily by the underlying structure of the arithmetic

operations performed, rather than such overhead considerations, so the

results obtained are generally accurate to within a small constant factor

for actual implementations.
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Evaluation of Powers

Suppose we are given a real number x and a positive integer n and

n
are asked to find the 'value of x . The obvious way to solve this problem

is to start with x and multiply by x a total of n-i times. For example,

to find x32 we compute each of the partial results x
2.,x',x4,...,x 3,X 3 2

and arrive at the desired answer after 31 multiplication steps. We will

call this algorithm the "brute force" method of computing x
n.

A more efficient way to arrive at x9 2 is by repeated squaring of

each partial result. For example, at the first step we square x to obtain

X 2. At the second step x2 is squared to yield x4, and so on. Using this

technique we arrive at x32 in 5 multiplications via the following sequence

of partial results: x2,x X Xel6, 32.

The method of repeated squaring can be used to compute xn with log 2 n

multiplications when n is a power of two. (If y=log x, the base-2 logarithm
2

of x, then 2y=x.) This achieves an exponential improvement over the brute

force method. The difficulty is that the algorithm can only be used

directly when n is a power of two.

An algorithm called the "binary method" generalizes the principle

of repeated squaring to work for all values of n. To apply this technique,

we begin by writing down the binary representation of the number n with

any leading zeros deleted. For example, if n=21 we write 21=(10101)
2

Ignoring the first bit in the binary representation (which must be 1),

we next replace each remaining 1 by the letters SX and each 0 by the letter

S. When n-21 we obtain the sequence of letters SSXSSX. This sequence

yields a rule for evaluating ?n if we interpret each S to mean "square

the result of the previous step" .and each X to mean "'multiply the result

of the previous step by x".
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In our example, we begin by squaring : to obtain z2 since the first

letter in the sequence is S. We next square this partial result to obtain

X4 since the second letter is again S. Because the third letter is X,

we multiply the result of the second step by x to yield X5 at the third

step, and so on. Hence we arrive at x21 by the following sequence of

partial results: x2 X. :X 1 X 20X21

We now wish to investigate the number of multiplication steps the

binary method uses to compute xn. There are Llog nJ+l bits in the binary

representation of n. (LxJ denotes the "floor" of x, or the largest

integer less than or equal to x.) Let V(n) denote the number of these

bits which are 1. Since one S occurs in the evaluation sequence for each

bit in the binary representation of n other than the first, the number of

squaring operations used is Llog nJ. Furthermore, the number of X's in
2

the sequence is Just one less than v(n). Hence Llog 2nJ+v(n)-l multi-

plications are used overall. Since v(n)<Llog nJ+l, with equality holding
2

when all the bits in n's representation are 1, the number of steps in the

binary method does not exceed 2Llog ni. 4
* 2

The smallest value of n for which the binary method is not optimal

is 15. The binary method uses 6 multiplications to evaluate xzs, with

the sequence SXSZSX giving rise to the partial results x2, S,:sjX ,X X:Xls.

However, :1 can be calculated in 5 steps by first finding y-x , and

raising y to the fifth power with three more multiplications since
ys.(X,)s. i1s.

This method for computing x=s is based on the realization that 15 can

be factored as 3 times 5. In general if the number n can be factored as

nup-q, then :2 can be evaluated by first computing y-xP and then calcu-

lating y q.(Xp)q-,y.qXn. We now describe an algorithm called the "factor

method" which is based upon this principle.
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Algorithm F: factor method. (Note that a prime number is one

having no integer factors other than 1 and itself.)

Fl. If n-l, we have xn with no calculation.

F2. If n is prime, calculate xn by first finding xn - 1 using the

factor method; then multiply this quantity by x.

F3. Otherwise, write n as p.q, where p is the smallest prime factor

of n and q>l. Calculate n by first finding xP via the factor method;

then raise this quantity to the qth power, again via the factor method.

We illustrate this technique by showing how x2 1 is evaluated. First,

21 is factored as 3-7, and x3 is calculated by repeated use of the algo-

rithm with 2 multiplications. Our problem reduces to calculating y7

where y=x3 . Since 7 is a prime, y7 will be computed by first finding

y and then multiplying by y. Repeated use of the algorithm reveals

that y6 will be found by taking (y 2 )$.. Letting z=y 2 , the steps used to

evaluate x 2 1 are: (1) x.x=x 2 , (2) x•2 .x--X3: (3) x 3 •x 3 =x Y 2=z

(4) x 6.*6 12 -2 (5) x 12 xax_=X3=y2)3, and (6) =is.3 ==21Y 6.Y

Although the performance of the factor method is better thaa thbt

of the binary method on the average, there are instances when the binary

method is superior. The smallest such case is n-33, where the factor

method uses 7 multiplications and the binary method only 6. In fact

there are infinitely many values of n for which the factor method is

better than the binary method, and vice versa. Moreover, neither the

factor method nor the binary method need be optimal. The smallest such

case is n-23, where both the factor and binary methods use 7 multiplications.

However, x2 3 can be calculated with 6 multiplications as follows:

(1) X.x-w2 , (2) =2 .x=w, (3) X:.X 2 =XS, (4) xS.xS=Io, (5) X1 0. x 1 =x@2 0,

and (6) x2o. aw23

3-6
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Since neither the factor method nor the binary method is always

optimal, it would seem worthwhile to investigate just how good these' two

methods are. Let P(n) denote the minimum number of ultiplications

nrequired to calculate x regardless of the method employed. Observe

that the greatest power of x which can be obtained using k multi-

plications is x 2k , and this is obtained by successively squaring x at

each step of the computation. Thus in order to compute a power of X as

large as x , we must use at least k multiplications where 2 k>n, or

equivalently, k>rlog nl. (rxl denotes the "ceiling" of x or the smallest

integer greater than or equal to x.) Therefore P(n)>log n1.
- 2

The above result provides a lower bound on the number of multi-

nplications required to compute z . It states that at least rlog 2nl

multiplications are necessary, but gives no indication at all of whether

this number is sufficient. Our earlier analysis of the binary method

further reveals that P(n)<2Llog nj, and hence the binary method is
- 2

* guaranteed to be efficient in the sense that it never uses more than

twice the minimal number of multiplications. The factor method demon-

strates that if n=p.q, then P(n)<P(p)+P(q).

The tree in Figure 4 gives a minimal, or optimal, multiplication

* sequence when n is 100 or less. To calculate xn we locate n in the tree.

The path from the root (bottom) of the tree to n indicates the sequencej

of exponents which occurs in one optimal evaluation of . The value of

p(n), for 1<n100, is simply the length of the path in the tree from

the root to n. For example, to compute x3 1 we find that we should

calculate the following powers of x: 2, 3, 5, 10, 11, 21, 31. Hence an

optimal chain is given by: (1) x.x-= 2, (2) z 2 .Xu_' 3 , (3) X'.X2MXs ,
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(4) xs'xs5-xl (5) X1 '7 1 1, (6) x11.IxX 2 1, (7) X'2 1 .j 1 1x". The idea

behind the method is that any number in the tree can be written as the sum

of two numbers, or twice a single number on the path between itself and the

root. The sums formed to reach n in the tree correspond to the intermediate

n a b.bpowers formed in calculating x . Of course we knew all along that z ' b- .

In our discussion of the power evaluation problem we have concentrated

on the operation of multiplication. Neither addition nor subtraction are of

any help in evaluating powers. But what about division? We have Just seen

that 7 multiplications are minimal to compute xsl. However if division is

allowed, xs3 can be found in 6 operations by calculating x1 2 with 5 multi-

plications via repeated squaring, and then dividing this quantity by x.

Unfortunately, the availability of division does not alter our lower bound

on P(n), and hence cannot substantially improve on the algorithms we have

discussed.

The problem of finding an optimal computation sequence for X has a

long and interesting history. Although Arnold Scholz formally raised the

question in 1937, before the appearance of digital computers, algorithm for

computing X had been studied for some time earlier. A version of the binary

method was expounded by the famous French mathematician Adrien M. Legendre in

1798, and it is closely related to a multiplication procedure used by Egyptian

mathematicians as early as 1800 B.C. Several authors have published statements

of the optimality of the method but, as we have seen, these claims are false.

We note in closing that the algorithms studied work not only for single number,

but carry over to the problems of raising polynomials and matrices to a power.
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Evaluation of Polynomials

The next problem we consider is that of evaluating a general polynomial

of degree nt. Such a pqlynomial may be written as p(x)_=cc n  n-+...+c + .
n1 0

We want to devise an efficient scheme to evaluate any such polynomial when

given the values of the coefficients 07eCn'- I , .. "Jc10 and the variable x as

data.

The usual method for evaluating a polynomial is to apply directly the

general formula given above. In so doing we first calculate each of the

powers of x using n-1 multiplications. Next we take the product of each

coefficient and its corresponding power. This requires another n multiplications.

Finally the n+l terms in the canonical expansion are sumed with n additions.

Thus a total of 2n-1 multiplications and n additions are used by this method.

When the term-by-term method described above is applied to the degree

two polynomial C X 2+o, X+C , three multiplications are performed: xx., "xa
2 1 0 2

O .x. This number can be reduced to two by observing that x can be factored1

out of the first two terms, yielding the formula (c x+o )x+c . The number of
2 1 0

additions remains two.

This insight suggests that we rearrange degree n polynomials as p(x) =

(... (X+oC )X+o_ )x+...+0 )x+o . To evaluate the polynomial we start with
n n-l n-2 I

C , multiply by x, add c nl, multiply by x, add cn-2' multiply by x,..., add

c I This method was expounded in 1819 by William G. Horner in conjunction with

an efficient technique for finding the coefficients of the polynomial p(x a).

Today the method is usually referred to as "Homer's rule" although it was

actually devised by Isaac Newton over 100 years earlier in 1711.

Homer's rule employs n multiplication and n addition steps to evaluate

polynomials of degree n. We might ask whether it is possible to do better.

The answer is no for general polynomials in which all of the coefficients and

the variable z are left unspecified. Of course particular polynomials, like

the one examined in Figure 2, can be evaluated with fewer operations.
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We can readily see that n addition/subtraction steps are required because

any scheme for evaluating p(z) clearly works when x1 and p(l)wsnc+n-1 + ..•.+o.

This implies that Homer's rule can be adapted to find the sum of any n+l

numbers by letting these numbers play the roles of coefficients and setting

x to 1. Since n add/sub steps are required to sum n+l numbers and our adap-

tation of Homer's rule uses exactly this many, the method is optimal with

respect to the number of add/sub steps. A demonstration that n mult/div steps

are also required is more complex. Since such a proof is based upon more

advanced concepts of linear algebra, we shall omit the details here.

Eduard G. Belaga, a Russian mathematician, first demonstrated the

necessity of n add/sub steps in 1958. Another Russian, Viktor Pan, showed in

1966 that n mult/div steps are also required. In 1971 Allan Borodin of the

Univerpity of Toronto further proved that Homer's method is uniquely optimal

in the sense that it is the only way to evaluate a general nth degree polynomial

with 2n arithmetic operations.

Next we consider the problem of evaluating an nth degree polynomial at

several points. Applying either the classical algorithm or Homer's method

at, say, each of n points requires a number of operations proportional to n2.

Using the concept of a '"modular transform", we shall obtain an algorithm whose

performance is only slightly worse than linear in n, resulting in a considerable

speed-up for increasingly larger values of n.

Evaluating a polynomial at the single point x=a is equivalent to finding

the remainder when p(x) is divided by x-a. This follows from the Remainder

Theorem of algebra, since we can write p(x)-(x-a)q(x)+r(z) where q(Z) and r(x)

are the quotient and remainder polynomials, respectively, when the division is

performed. Note that the degree of q(x) is one less than that of p(x) and r(z)

is a constant. Setting x-a we obtain the desired result, that p(a) is equal to

the constant r.
3-10
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This technique can be generalized to the situation in which we wish to

evaluate the polynomial p(x) at k points, a ,a ...,a where k < degree of p.
k 1 2 '

We first form the product m(x)- 11 (x-ai). Again from the Remainder Theorem,

ij

we find that p(x)-m(x)q(x)+r(x) where q(x) and r(x) are the quotient and

remainder polynomials when p(x) is divided by m(x). At each of the points

XMai the value of m(ai)=O, so we have p(ai)=r(ai). Since the degree of r is

less than that of p, we have reduced our problem to the simpler one of

evaluating r(x) at the k points.

A common property of many fast algorithms is that they reduce a problem

to a simpler one by dividing it into two subproblems, each of which is at most half

as difficult as the original problem. Applying this principle, a fast algo-

rithm for the problem of evaluating an nth degree polynomial at n+l points

suggests itself. First, divide the n+l points in half and form the poly-
n./2 n+l

nomials m (x) TI (x-ai ) and m (x)= 11 (x-ai). Analogous to what we did
1 i-l 2 i-n/2+l

above, we next divide p(x) by m (x) to get r (x) and m (x) to get r (x). We
1 1 2 2

have now reduced our original problem to that of evaluating the two n/2-th

degree polynomials r (x) and r (x) at n/2+l points. To do this we apply the
1 2

method repeatedly.

For example, suppose we wish to evaluate the polynomial p(x)ix3-2x2+3x+l

at the points x=-l,O,l,2. We first form m (X)=(x+l)x=z2+x and m2 (x)=(x-l)(x-2)f

x2-3r+2. Dividing p(x) by m (x) and m (x), we obtain r (x)=6xl and r (x)=&x-l.
1 2 1 *2

Dividing rI (x) by x+l and x, we find from the remainders that p(-l)=-5 and1

p(o)-l. Similarly dividing r2 (x) by x-l and x-2, we det that p(l)- 3 and p(2).7.

The tree in Figure 6 illustrates the manner in which the products mi.(x),

or "moduli", are built up in general. The divisions of p(x) and the subsequent

reminders are computed in the reverse order. If the products are formed

moving from the top of the tree downward, and then the divisions are performed

going from the bottom of the tree upward, only one polynomial multiplication

and one polynomial division need be performed for each node in the tree.

3-11
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It turns out that the number of scalar arithmetic operations required

to either multiply or divide two polynomials of like degree are the same to

within a multiplicative constant. Because of this, the running time of our

algorithm for evaluating an nth degree polynomial at n+l points is driven by

the time required to symbolically multiply two polynomials given their co-

efficients. In fact the overall running time of the modular transform

algorithm described above is Just a factor of log n greater than the time

required to multiply two polynomials of degree n. With this motivation we

now turn our attention to the polynomial multiplication problem.

Polynomial Multiplication

In the polynomial multiplication problem, we are given two polynomials

represented by their coefficients as data and are asked to compute the co-

efficient representation of their product. Let the two input polynomials be
n-l n-i

band i x (It will be easier to work with polynomials
i0 i=

having n coefficients and degree n-1, rather than those of degree n.) Their
2n-2 k

product is a polynomial of degree 2n-2, p(x).q(x)= I okc , whose coefficients
k k=0

expressed in terms of the inputs are A7ij=oa kibi . Note that ck is the sum

of all products of the form aib.J in which i~j=k. Thus c=a 0b , o =a b +ab 1,

o =a b +a b +a b , etc.
2 20 1 1 02

The classical algorithm for polynomial multiplication is to apply the

formula given above to compute each coefficient in the result directly. In so

doing n 2 scalar multiplications are used since every product of the form aib.,

involving one of the n coefficients from "ach input polynomial, is formed

exactly once. The total number of additions made is equal to the number of

aibj pairs less the number of coefficients formed, or" 
2-(n-1). For example,

if p(z)a Iz+a ' and q(z),b Iz+b , the product is P(z).q(z),(a b )x2+(a b + a b )z

+a b . Here n-2 and we see that 214 multiplications (viz., a b a ab aob
0 0 I0 16 1"

a b ) and 22-(2"2-1)-l addition (viz., a b +a b ) are perforamed.
O 0 10 03

3-12



It turns out that the product of two 2-coefficient polynomials can be

found with 3 multiplications, instead of the usual 4. This product can be

expressed in terms of the three multiplications mI -a.b., M v b and

m =(a .a ).(b +b ) as p(x).q(x)"n x2+(nm -M2 -m )x4mI . Although this schemeS 1 0 1 0 2 3 2 1 1

uses 4 add/sub steps, it can serve as the basis for an algorithm to multiply

two n-coefficient polynomials with a substantially smaller total number of

operations than the classical algorithm for increasingly larger values of n.

To see how such a reduction in work is possible, consider the case when

n-4 . The classical algorithm uses 42=16 multiplications to find the product

of the two polynomials p(x)-a x'.a x2z x-z and q(x)=b x3 +b x2+b X+b
3 2 1 0 3 2 1 0

Observe that we can split these polynomials into upper and lower halves, ex-

pressing them as p(x)=S(x)X2+t(X) and q(x)-u(x)x2 +v(x) where 9(x)- a x-+a
3 -2

t(x)- x+a0 u(x)=b x+b and V(z)-b x+b . In this form the product
3 2 1 0

p(x).q (SVux +tt)X 2+tV.

If we take each of these 4 subproducts of 2-coefficient polynomials in

the classical way we use 4"4=16 multiplications. But instead we can take

advantage of our 3 multiplication scheme by forming the products m --t-v,

m av*u, and m =(a+t)-(u4v). Since each of these 3 products of 2-coefficient
2 

1

polynomials can be found by a repeated application of the 3 multiplication W

Ascheme, only 3.3-9 scalar multiplications are used. The desired result is

p(X).q(x)m z2 +(m -M -m )z., . The details of this scheme are illustrated in2 S 21l 1

Figure 11.

Novw let us generalize to the case of arbitrary size polynomials. For

simplicity we will assume that the nwber of coefficients, n, is a power of

two although a similar result can be derived for any value of n. We begin by

dividing the coefficients of the Inputs into upper and lower halves, expressing

these polyno ,ils as p(:)=e()xn/2t(x) and q(X).U(X)X"/2+v(X). we next form

3-13
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the following products of n/2-coefficient polynomials: m -t.v, m w.zs, and
1 2

m :(s+t).(u a). In taking each of these products, we will apply the algorithm
S

r~cursively (i.e., repeatedly) until n-i. The desired product p(x).q(x) is

ultimately formed as m xn+(m -m _m )xn/24.
2 3 2 1 1

The approach to the polynomial multiplication problem described above is

an example of what is known as a "divide-and-conquer" algorithm. The idea

behind this common algorithm design technique is to split a problem into a

number of subproblems of the same kind involving disjoint subsets of the

inputs. The subprob'ems are solved separately by reapplying the divide-and-

conquer strategy, and then a method is found to combine the solutions of

these subproblems into a solution of the whole problem. Frequently, as in

the case of polynomial multiplication, a divide-and-conquer approach can

lead to a more efficient algorithm than a direct attack on the original

problem. We shall see another application of this paradigm later.

We now investigate the efficiency of the divide-and-conquer polynomial

multiplication algorithm. Let M(n) denote the number of scalar multiplications

performed in taking the product of two n-coefficient polynomials. Since the

scalar multiplications made in forming the product of the two original

polynomials are exactly those used to compute the resulting 3 products of

n/2-coefficient polynomials, we have that M(n)=3M(n/2). This equation, called

a recurrence relation, can be solved by back-substitution as follows:

M(n)-3Mn/2)=32M(n/4)=...-3-kM(n/2k). The process stops when 2 k-n or k-log n,

at which point we use the initial condition M(l)al to obtain M(n)-31og2nnog23
.

(M(l)-l since one multiplication is used to find the product of two 1-coefficient

polynomials, a b .) Because log2 3l. 59, the divide-and-conquer algorithm uses
t.$1 2

? scalar multiplications to the classical algorithm's n2.

.t
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We next obtain a recurrence relation for the number of scalar add/sub

steps, A(n). The additions performed when multiplying two n-coefficient

polynomials arise from three sources: (1) recursively applying the algorithm

to find 3 products of n/2-coefficient polynomials, (2) performing 2 additions

of n/2-coefficient polynomials (viz., a+t., u+v)and 2 subtractions of (n-l)-

coefficient polynomials (vi.,, m -m -m ), and (3) forming the coefficients

of the original product frTm the results of recursively applying the procedure

(e.g., the additions d 4 and d +d in the third step of Figure ii).
2,0 )t 1,0 0,2

By definition, there are 3(n/2) additions from the first source. The sum of

two polynomials is found by merely adding their corresponding coefficients,

so the second source contributes 2(n/2)+2(n-l)=3*-2 additions. The third

source generates n-2 additionu. Hence the desired recurrence relation is

A(n)=3(n/2)+4n-4, whose solution with initial condition A(1)=O is A(n)-

6nl g23_8n+2.

We have Just shown that both the number of multiplications and add/sub

steps in the divide-and-conquer algorithm grow proportionally to n1 s5. This

can represent a substanti@, improvement over the classical algorithm, where

the number of operations grown as n 2. When n-8 the total number of arithmetic

operations performed by beth sagorithms are comparable: 127 for divide-and-

conquer to 113 for the classical method. For larger values of n the divide-

and-conquer method is superiQr.

Is this the fastest that two polynomials can be multiplied? The method

just described is base4 on %he fact that the product of 2-coefficient poly-

nomials can be found with 3 multiplications. It yields a general algorithm

for n-coefficient polynomials in which the number of scalar arithmetic oper-

ations performed grows as J 1o2 3 . Using a divide-and-conquer approach, it

is possible to cevert any scheme for computing the product of two polynomials

of some specific size m with p mltiplications into a method for multiplying

3-15
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a --

arbitrarily large n-coefficient polynomials using 0(nlog6P) operations.

(The 0-notation denotes the order of magnitude of a function's growth rate,

ignoring any constant factors of proportionality.) If m and p are such that

lo9p < 1.59, the resulting algorithm will be asymptotically better than

the one we have discussed. To date no one has been able to produce a faster

algorithm using such a strategy.

Algebraic Transforms

One way to specify a polynomial is to give its coefficients. This is

the only representation we have been working with up to now. A well-known

result in algebra states that there is a unique polynomial of degree less

than n which will fit through any n points. Thus an alternate representation

for a polynomial is to give its values at n points.

The product of two n-coefficient polymomials is a polynomial wth 2n-1

coefficients. Such a polynomial can be uniquely represented by its value at

2n-1 points. This suggests a new method for multiplying the n-coefficient

polynomials p(w) and q(x). We begin by evaluating both p(x) and q(x) at

2n-1 selected points, x- I a 2 ... ,a2nl. We next multiply together the

corresponding values of the polynomials at these points, forming 2n-1 products

p(a) q(a ). The polynomial which uniquely fits these 2n-1 values is the

desired product p(x)'q(x).

This approach to multiplying two polynomials is called an algebraic

transform. Instead of dealing directly with the coefficients of p(x) and q(x),

as we have done previously, we first transform the coefficient representation

of p and q into another form, one in which the polynomials are represented by

their values at a collection of points. We perform the actual multiplication

on this second representation by taking the pairwise products of the values of
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p and q at the sample points. We now have a representation of the product

polynomial in the form of its value at a number of points, and must perform

an inverse transformation to obtain the coefficient representation of the

result. This final step is called interpolation. The entire process is

illustrated in Figure 12.

In a previous section we considered the problem of evaluating a polynomial

at several arbitrarily selected points. The performance of the algorithm we

described is asymptotically the best of any method known to date. This

algorithm uses a number of basic arithmetic operations proportional to

n(log n)2 when evaluating an n-coefficient polynomial at 2n-1 points. Similarly,

the best known algorithm for interpolating a polynomial through 2n-1 arbitrary

points also performs a number of basic arithmetic operations proportional to

nCLog n)2 . (The more familiar classical interpolation algorithms of Isaac

Newton and the noted French mathematician Count Joseph Louis Lagrange employ

a number of operations growing as n 2 .) Thus the number of operations used

in the transform method for multiplying two polynomials is dominated by the

evaluation and interpolation steps, rather than the 2n-1 pairwis multiplications,

and is O(nCLog n)2).

In the transform Just described, the values of x where the evaluation and

interpolation take place are arbitrarily chosen. It turns out that a judicious

choice of points can lead to a slightly improved algorithm. Observe that the

polynomial p()-a +a x+.... ?xban be broken into a sum of odd and even

powered terms: p(x)-(a 0 +a + ."0+an-2n - 2 ).+(a x+a 3'+ .+an- n-l). Substi-

tuting y= =w, we have p(x)=(a 0+a 2y+...4,a_2yn/2- 1 ) +(a +a y+...+an-lyn/2-1).

s(y)+xt(y). Thus the problem of evaluating the n-coefficiept polynomial p(x)

reduces to the problem of evaluating two polynomials a(y) and t(y), of half

that size,plus three additional operations: yw 2, x.t(y), (y)+zt(y). How-

ever, we are till faced with the task of evaluating both a and t at the same

number of points, and no reduction in the number of operations his occurred yet.
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When the points where the evaluation and interpolation take place are

chosen to be the primitive n-th roots of the equation x =1, the process can

be speeded. If w is one of these primitive n-th roots of unity, then U=1

and w 01 for all k<n. Moreover, if n is even then w2 is a primitive n/2-th
rotof1sncff(=n2 n /2=-

root of 1 since w n(Wz) . Furthermore, - which is easily verified

by (-1)2=(w"12)2=="=1.

We now return to the problem of evaluating our odd and even sum polynomial

p(x)=e(y)xtQ(y), where yx = , but at the n distinct points -awj for O~j<n-1.

2 i 2 4-n/2 2jjn.Then PCw)=eC=2)+jt(w2j) and p(Wj )e(w )-t(wuj), since

bjon/2=-wj and (W )+ /2)=(-j) 2= . These formulas reveal how the problem

of evaluating the polynomial p(x) at n points can be divided into two sub-

problems which involve evaluating polynomials of half the original size at

half as many points. The subproblems are the evaluation of 8 and t, both

2j(j2having n/2 coefficients, at the points w =(w) for O<j<n/2-1, the primitive

n/2-th roots of unity.

This strategy for splitting the problem can be applied repeatedly until

we eventually arrive at the trivial problem of evaluating a constant poly-

nomial. The total number of scalar arithmetic operations performed is

governed by the recurrence relation T(n)=2T(n/2)+cf, where the last term

represents one addition and one multiplication for each point xi. (The

number of multiplications can be cut in half by realizing that X /2-z.)

Since the roots of unity are in general complex numbers, several scalar

operations will be needed for each arithmetic operation as written. The

solution to the recurrence, with boundary condition T(l)-O, is given by

T(n)u.n log n for n a power of two.
2

The algorithm described yields an O(n log n).algoritm for polynomial

multiplication, the asymptotically best method known. It is still an open
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question whether the technique is optimal since the best lower bounds to date

are of order n. Such lower bounds are not surprising since solving the

problem involves processing 2n inputs, each of which must be used at least

once.

The algebraic transform serving as the basis of the algorithm is the

well-known fast Fourier transform, or FFT. The FFT traces its origins to the

German mathematicians Carl Runge and H. K~nig in the 1920's. G. C. Danielson

and Cornelius Lanczos (1942) and Irving J. Good (1958) were other early

contributors. A fundamental paper by James W. Cooley and John W. Tukey in

1965 clarified the technique and led to its widespread use. The recursive

formulation of the algorithm described here is due to Allan Borodin and Ian

Munro. Several other researchers, including Charles M. Fiduccia, Ellis

Horowitz, John D. Lipson and Robert Moenck, have also made substantial con-

tributions in the area to provide an interesting and coherent view of the

relationship between evaluation, interpolation, and modular arithmetic. The

FFT, itself, is utilized in many fields of science and engineering, perhaps

most notably in signal processing applications such as communications, and

speech and image processing.

Polynomial multiplication finds a useful analog in the problem of forming

the product of two n-digit numbers. In fact the divide-and-conquer polynomial

multiplication algorithm using 0(n " 5 9 ) operations, which we considered earlier,

is based on a technique described by the Russian mathematicians A. Karatsuba

and Yu. Ofman in 1962 for the digit product problem. In 1971 the German

mathematicians Arnold Schonhage and Volker Strassen applied the FFT to produce

an algorithm using O(n log n log log n) digitwise operations to multiply two

n-digit numbers.
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Matrix Multiplication

One final problem we will investigate is that of multiplying two square

matrices. This problem and several related operations arise frequently in

scientific applications of computers. An efficient algorithm for matrix

multiplication can be used, for example, to obtain fast algorithms for in-

verting a matrix, finding its determinant, and solving systems of simulta-

neous linear equations.

Suppose we are given two n x n matrices A and B. We will denote the

n 2 elements of each of these matrices by aij and bij, where i and j range

between 1 and n. The result of multiplying these two matrices together is

another n x n matrix C=-A.B, whose entries are given by the formula
n

cij I aikb.. Note that i and j remain constant in the sum, while k

ranges over all n values.

The standard method for multiplying two matrices is to apply directly the

above formula n2 times. Since the product aik b is used in the computation

of exactly one entry, ci, no overlapping of operations is possible. Observe

that n multiplications and n-l additions are used to calculate each entry,

and thus a total of n2.no 3 multiplications and n2(n-l)=n3-n2 additions are

used overall.

Thus the standard algorithm uses 8 multiplications and 4 additions to

compute the product of two 2 x 2 matrices. In 1969 Volker Strassen of the

University of Zurich showed, surprisingly, that only 7 multiplications were

required. Strassen's scheme, which is given in Figure 14, trades one multi-

plication at the expense of 14 extra add/sub steps. The key point, however,

is that the method does not make use of the commutativity of multiplication,

and hence can be used as the basis of a divide-and-conquer algorithm for

multiplying larger s3ze matrices.
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For xample, suppose we want to find the product of two 4 x 4 matrices

A and B. Each of these matrices can be partitioned into four 2 x 2 submatrices,

as illustrated in Figure 15. Thus we can regard both A and B as 2 x 2 matrices

whose entries are themselves 2 x 2 matrices. Applying Strassen's algorithm

recursively to obtain the product C=A.B, we first form 7 products of 2 x 2

matrices. Since each of these products can be calculated with 7 scalar multi-

plicati6ns, 7-7=49 multiplications are used overall. This represents a con-

siderable improvement over the 43=64 multiplications employed fn the standard

algorithm!

Let us now examine how Strassen's scheme can be applied to obtain a fast

method for multiplying two square matrices of any size n. For simplicity we

will assume that n is a power of two, although this restriction is not essential.

To multiply two n x n matrices, we first partition both of the matrices into

four n/2 x ni2 submatrices. The product of the original n x n matrices can

be formed using Strassen's scheme by computing the product of 7 square matrices

of size n/2. To find these products we can apply the technique once again.

We now examine the efficiency of Strassen's algorithm. Let M(n) denote

the number of scalar multiplications used in computing the product of two

n x n matrices. Since this product can be reduced to the problem of forming

7 products of n/2 x n/2 matrices, we have M(n)=7M(n/2). The solution to this

recurrence relation, with initial condition M(l)=l, is M(n)=7lOg2n--n0927. This

result is easily obtained by back-substitution: M(n)=7M(n/2)=7 2M(n/4)=...-

7 kM(n12 k)-. ... lo °2nM(1 ). Since log 7&2.81, we have that Strassen's algorithm
2

uses n2 *82 multiplications, instead of the usual n3, to multiply two n x n

matrices.

What about the number of add/sub steps? For the 2 x 2 case, the standard

method uses only 4 additions, while Strassen's scheme employs 18. Robert L.

Probert of the University of Saskatchewan showed in 1973 how to reduce this
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number to 15 snd, moreovvr, proved that 15 odditions were necessary in an

scheme using only 7 multiplications. It appears that although Btrassen's

method may save on multiplications, this savings will be more than offset by

the extra cost of the seemingly large number of additions. Surprisingly, we

shall see that for sufficiently large matrices the number of additions is

actually reduced!

Let A(n) denote the number of scalar additions performed when Strassen's

method is used to multiply two n x n matrices. ftamination of the algoritba

reveals that this quantity is equal to the number of additions performed in

multiplying 7 matrices of size n/2 plus the scalar additions used in forming

a (18 or 15) sums of n/2 x n/2 matrices. When adding two matrices we merely

add the corresponding pairs of elements using scalar additions. Hence the

recurrence relation describing the number of additions is A(n)=7A(n/2)+a(n/2)'.

The solution to this equation, with initial condition A(l)=O, is A(n)ua/3-
281 2).

We have Just seen that both the number of multiplications and the number

of additions performed by Strassen's algorithm are propor.tonal to n °  .

For sufficiently large values of n, the value of any function proportional to

n2" 1 will be less than one growing as n3. Hence Strassen's algorith- is

asymptotically faster than the standard one. But when does it begin to pay

to use Strassen's algorithm? Jacques Cohen and Martin Roth at Brandeis

University have shown that the crossover point is at about n-40. Their results

are based on timing experiments on an actual computer which take into account

the added overhead incurred by more complex accessing of the data as well as

the number of arithmetic operations performed.

The divide-and-conquer approach underlying Strassen's algorithm ight be

used to generate even faster matrix multiplication algoitdb.s. Any non-
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commutative scheme for finding the product of two m x m matrices with p

multiplications can serve as the basis of a method for multiplying matrices

of arbitrary size n with 0 (n
l1o") operations. Thus if we could show hnow

to multiply 2 x 2 matrices with 6 scalar multiplications, we could take the

product of arbitrary size matrices with o(n log6)-O(n 2 "5 ) operations.

Unfortunately, John E. Hopcroft and Leslie R. Kerr at Cornell University

and Shmuel Winograd of IhM showed independently in 1971 that this is impossible.

To date the best method for the 3 x 3 case uses 23 multiplications, while 21

would be needed to better Strassen's result.

Viktor Pan, working at the IBM Thomas J. Watson Research Center, has taken

an entirely different approach to the matrix multiplication problem. In 1979

he exhibited an algorithm using only 0(n8*41) operations, but with such a

serious increase in the constant of proportionality that the method would be

impractical to implement. To date all that is known is that at least on the

order of n2 operations are needed. This is not surprising in view of the fact

that the input consists of 2n 2 matrix elements, and all of the data must be

used at least once. Researchers are actively trying to bridge the gap between

the best upper and lower bounds for this problem.
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Input data

Dl. a D2. b D3. c D4. d

Computation steps

SI. Dl x D3 = ac SI. Dl + D2 = a+b

S2. D2 x D4 - bd S2. D3 + D4 - c+d

S3. Dl x D4 - ad S3. Sl x S2 -uac+ad+bc+bd

S4. D2 x D3 = bc S4. Dl x D3 - ac

S5. Sl -S2 = ac-bd (real) S5. D2 x D4 - bd

s6. S3 + SA = ad+bc (imaginary) S6. S4 - S5 - ac-bd (real)

Classical method S7. S3 - S4 = ad+bc+bd

s8. S7 - S5 - ad+bc (imaginary)

Three multiplication method

Figure 1. Two methods for forming the product of the complex numbers

(a+bi)(c4di)=(ac-bd)+(ad+bc)i. The classical method uses 4 multiplications

and 2 additions/subtractions, while the problem can also be solved with 3

multiplications and 5 additions. If M and A denote the time required to

perform a single multiplication and addition, respectively, the second method

is faster if 3M+5A<4M+2A, or M/A>3.
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Input data Input data

Dl. x Dl. x

Constants Constants

Cl. 2 Cl. 1

C2. 4 C2. 2

C3. 5

Computation steps Computation steps

SI. Dl x Dl = x 2  Sl. Dl + Cl -X+l

S2. Dl x S1 - x3  S2. D1 + C2 = z+2

S3. C2 x Sl= 4S S3. S1 x Sl = X 2 +2+l

S4. C3 x Dl - 5x S4. S2 x S3 = x +4X2 +5x+2

S5. 82 + S3 _ X3+4X2

s6. S5 + s4 - x 3+4x2 +5

S7. s6 + Ci +2

Figure 2. A straight-line algorithm consists of a series of computation

steps in which an arithmetic operation is applied to either the input data,

constants, or the results of prior computation steps. Two algorithms for

computing ptx)-x 3+4X 2 +5x+2 are shown. The first applies the formula directly

using 4 multiplications and 3 additions. The second, which takes advantage

of the fact that p(x) can be factored as p(z)(.1)(zx+2), uses only 2

multiplications and 2 additions.
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Input data

Dl. x

Computation steps

SI. Di x Di = 2  Si. Di x Di = x2  S SI. Dl x Dl = x 2 Y SI. Dl x Dl = x 2

$2. S1 x D1 = 3  S2. S1xS1= S S2. x$= y 2 =z 52. Sl x Dl = x

S3. S2 x Dl = x4 S3. S2 x Dl = x s  X S3. S2 x S2 = xG Z2 63. S2 x Si = x 5

S4. S3 x S3 = x10 S S4. S3 x S3 = x (Z2)2 S4. S3 x S3 = X10

S21. S20 x Dl = 222 S5. S4 x D1 11 X S5. S4 x S2 = X20 zS =yO S5. s4 x S4 = X20

622. S21 x Dl = a23 S6. S5 x S5 = X22 S S6. S5 x Si = X22 y,0.y S6. S5 x S2 = X23

s?. s6 x D1 = X2 3 X S7. S6 x Dl = x 23 Y 'x
flrute force method Binary method Power tree method

Figure 3. Comparison of several algorithms for x23. The brute force method uses 22

multiplications, the binary and factor methods 7, and the power tree only 6. In the

binary method, 23-(10111) gives rise to the computation sequence SSXSXSX where S2

means "square the result of the previous step" and X means "multiply the result of

the previous step by X". In the factor method, :23WX22.Z_(*2)11.:; letting ywX 2,

Y)1 1=OU 1.yW(y2)s.y; letting B--i 2 , zs=(z2)2.z.
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Input data

Dl. x D2. c D3. 0 D4. c D5. c
0 1 2 

Computation steps
Sl.l DI. x5 DI D1 X2SI. D1xD1 compute Si. D5iDl-o:1

S2. S x D1 -x power 2. Sl + D14 - c x+

S3. D3 xDl ac Ix mltpyb S3. S2 xD1=c 3x 2+0 21 multiply by a 2

S4. D4 X Si = C X 2 coefficients S4. 83 + D3 _ + X,
2 3 2 1

S5. D5 x S2 = c x3 S5. S4 x Dl = c3x+0 X2 +0Z

S6. S5+8S.ax3 +cx 2  1 S6. S5 + D2 - c c +0 ' x+C 4+O
3 2 3 2

$7.$6 $3 = C X3+C X2+ X tems
ST. S6 + S3 3 2 1 terms Homer's method

S8. ST.+ D2 - c xs+c x2+C X+C
3 2 1 01

Usual method

Figure 5. Two methods for evaluating a general third degree polynomial

p(X)_3 3+C2 2+CI X+C . The usual method is to first compute the powers of
S 2 1 0

X: X2, x3; then multiply the powers by the appropriate coefficients:

C X, C x2, C x; and finally to sum the terms. Honer's method uses repeated
1 2 3

factoring to evaluate p(x) as ((c x+ )X4c )X+c . When evaluating an nth
3 2 1 0

degree polynomial, .the usual method performs 2n-1 multiplications and n

additions, while Horner's method employs only n operations of each type.
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x-a x-a x- X..1 2 3

p(a )=r mod (x-a ) p(a )=r mod (x-a ) p(a )=r mod (x-a ) p(a )-r mod (x-a

m =(x-a )(x-a ) m-(x-a )(x-a
1 1 2 2 3 4

r =p(x) mod m r =p(r) mod m
S, .1 2 2

• /

/

S /

Figure 6. Tree showing the products and remainders to be computed when evaluating

a polynomial p(x) of degree > 3 at the 4 points Xa ,a 2,a,a using the modular

transform method. First the products mi called "moduli", are built up in the

manner shown moving from the top of the tree downward. Then the divisions of

p(x) and the subsequent remainders indicated are computed in the reverse order,

going up the tree. (r- a mod m means that r is the remainder when a is divided

by M.) The overall running time of the algorithm is driven by the time to

symbolically multiply and divide polynomials.

3
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5C +2W2  +3 5xS+2= 2  +3
+ 2CS  -6:-1 - 2z -6x? -1

T7=+2x'-6x +2 3x'+2x?+6x +

Figure 7. Polynomial addition and subtraction. Two polynomials are added

(or subtracted) by adding (or subtracting) the coefficients of the corresponding

powers of the variable x. The sum and difference of 5x3+2x2+3 and 2x$-6z-I are

shown.

3-32'
3-32 ,



5XS+2x2 +3 multiplicand
X 2z' - 1 - multiplier

-5-O -2vl -3 (-I times 5'I+2w2+3)
-3ox4-i2c '  -18X (_6X tines 5I+(= S+3)

lOXS+4x s  6x3 (2cs times 5 S+.2z+3)

l0x*+4zS-30x-lIz32X2 -18-3 product

Figure 8. Polynomial multiplication. The classical way to take the product

of two polynomials is to multiply each term in the multiplier by the multiplicand

and then sum the results. The product of 5T3+2x2+3 and 2x3-6x-i is illustrated.

3-33



w-1 quotient
divisor 32-+2 +6.?-52+9z+3 dividend

6x3-2x2+4 (2 times 3X2 -x+2)

-3x"+5T+'3 (61-5x22 +9x+3 less 6XI-2X2+4X)
-3x2+ x-2 (-l times 3=2-x+2)

remainder M (-3x2 +5x+3 less -3X 2 +x-2)

Figure 9. Synthetic division of polynomials is similar to long division of

two integers. First the high order terms of the dividend and divisor are

divided, this result is multiplied by the entire divisor, and the resultant

product is subtracted from the entire dividend to yield a trial remainder.

(In the exmple shown, 3x2 into 6x 3 is 2X, 2X times 3X2-xm2 is 6x'-2x2+4x,

and 6X3-5X2 +9:3 less 6x3-2z2+4X yields a trial remainder of -3x2+5x+3.)

The entire process is then repeated with the trial remainder in the role that

the dividend played initially. (3X2 into -3W2 is -1, -1 times 3x 2 -X+2 is

-3X2+x-2, -3x2+5a+3 less -3x2+x-2 is 4x+5.) The procedure continues until a

trial remainder of degree less than the divisor is obtained.
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pb~x+(a-o xos )I 0 p().q(x)ia b I2+(a b +a b ) +a b
q(z)=b x+b 11 0

Input data

Dl. a D2. a D3. b D4. b
1 0 1 0

Computation steps

SI. D2 x D4=a b (constant term) SI. D2 x D4=a b (constant term)
0 0 0 0

S2. Dl x D4=a b S2. Dl x D3-a b (coeff. of x2)
1 0 1 1

S3. D2 x D3-a b S3. Dl + D2=a +a
0 1 1 0

S4. S2 + S3-a b +a b (coeff. of X) S4. D3 + DU=b +b1 00 1 1 0

S5. Dl x D3-a b (coeff. of X 2 ) S5. S3 x S4=a b +a b +a b +a b
11 1 1 0 0 1 0 0

Usualmethod s.S 0 3 b a 0 b 0

ST. S6 - Sl=a b +a b (coeff. of x)1 0 0 1

Three multiplication method

Figure 10. Two algorithms for multiplying first degree (i.e., 2-coefficient)

polynomials. The usual method uses 4 scalar multiplications, while the product

can be formed with only 3 scalar multiplicationG by using extra additions and

subtractions.
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1. Split each input polynomial having 4 coefficients into an upper and lover
half with 2 coefficients.

p(x)-a za 2 cla I a q(x)=b x1%+b xz+b 0+b
3 2 1 0 3 2 1 0

-8(.x).x 2+t(x) =U(X). +v(X)

vhere s(z)=a x where u(x)=b x+b
3 2 3 2

t(x)*a x v(x)-b x+b1 0 1 0

2. Multiply the polynomials p(x) and O(x) by forming 3 products of 2-coefficient
polynomials. Each of these products can be computed with 3 multiplications,
for a total of 3"3=9 scalar multiplications.

m zt-V D -m =tv=d X2+d x+d
1 0 1 0,2 0SI 010

m =81u D =m -m -m =v+tu-=d x2 +d x+d
2 1 3 2 1 1,2 1,1 1,0

m =(s+,t)-(u+v) D =m =su=d x2+d x+d
3 2 2 2,2 2,1 2,0

where d * b d =a b +a b d ;a b
0,0 0 0. 1,0 2 0 0 2 2,0 2 2

d =ab+ab d =ab+ab +ab+ab d =ab+ab
0,1 1 0 0 1 1,1 3 0 21 1 2 0 3 291 3 2 2 3

d =ab d -ab +ab d =ab
0,2 1 1 1,2 3 1 1 3 2,2 3 3

3. The desired product p(x)'q(x) may be expressed as follows.

p(x)'q(x)=D 2x+D 2+D02 1 0

=(d :2 +d x+d )X.4-(d 1 2 +d .x+d )x 2 (d x 2 +d 0 +d )2,2 2,1 2,0 1,2 1,1 1,0 0,2 0,1 0,0

=d r6+d xl+(d +d )x4+d x 3+(d +d )X2+d x+d
2,2 2,1 290 1,2 1,1 1,0 0,2 0,1 0,0

_C X6+C X
5
+C X4+- XI'l X2+C +

6 S 4 3 2 1 0
where c ud a b

0 0,0 0 0
cud -a b +a b

1 0,1 1 0 0 1

"cud +d -a b+ab+a b
2 1,0 0,2 2 0 1 1 0 2

eud -ab +ab +ab +ab
3 1,1 3 0 2 1 1 2 03

c -d +d -a b +a b +a b
4 2,0 1,2 3 1 2 2 1 3

c ad =a b +a b
S 2,1 3 2 2 3

" ad *a b
6 2,2 3 $

Figure 11. Divide-and-conquer polynomial multiplication algorithm applied to two
general 4-coefficient(degree 3) polynomials p(x) and q(X). Because two 2-coefficient
polynomials can be multiplied taking 3 products instead of the usual 4, p (in) and q ()
can be split into two 2-coefficient polynomials and multiplied with 3"3=9 scalar
products. The classical method would have employed 16 products. In general the
divide-and-conquer approach leads to an algorithm using O(n " ss) arithmetic
operations overall, while the usual method is O(n 2).
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conventional
n coefficients arithmetic 2n-1 coefficients
of p(x) and q(x) of p(x).q(x)

evaluation interpolation

t

values of p(z)and value of p(x)'q(x)
q(x) at 2n-1 points pairvise scalar at 2n-1 points

multiplication

Figure 12. Algebraic transform for the product of two n-coefficient polynomials

p(x)'q(z). The classical algorithm obtains the coefficients of the product

polynomial directly using conventional arithmetic. In the transform method

p(x) and q(x) are both evaluated at 2n-1 points, and their values at corresponding

points are multiplied together. This yields the value of p(x)'q(x) at 2n-1 points.

The coefficients of the product polynomial are obtained via interpolation since

there is a unique polynomial with 2n-1 coefficients which fits the points.
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imaginary

a.xis

real
S(1,0) axis

(1,87t/5)

Figure 13. A complex number a+bi can be represented by a vector in a plane using

the real and imaginary parts of the number for Cartesian coordinates. Alternatively,

a number can be represented on the same grid by giving its polar coordinates (r,e)

where r=Vra2_' and Otan-1 b/a. The polynomial x"-l has n roots, called the n-th

principal roots of unity. Geometrically, the vectors representing these numbers

slice the unit circle into n equal pie-shaped pieces. The polar coordinates of

the fifth roots of unity are shown.
4
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2 z 2 ustiz.z-atrix pzoduct: A'B-C

[a a -b b1 1211 12 j 1

21 22 21 b221 2

Usual method: 8 mult, 14 add/sub

v -a b .a b o *a b +a b
11 11 11 12 21 12 11 12 12 22

b -a b +a b c -a b 4a b
21 21 11 22 21 22 21 12 22 22

Strassen'a method: 7 mult, 18 add/sub

M-(a12a )(b +b ) 0 am I+2 - M 4 1

M 2(a a )(b +b ) 0 12m 4
2 11 22 I1 22 12 4 U

M-(a -a )(b +b ) C am4
11 21 11 12 21 G 7

m-.(a a )b a am -i rn-rn
11 12 22 22 2 3 5 7

m -a (b -b
5 11 12 22

m -a(b -b )
6 22 21 It

m-(a a )
7 21 22 11

Figure 14. The usual method for multiplying tvo 2 x 2 matrices involves 8

multiplications and 4 additions. In 1969 Volker Strassen shoved how the number

of multiplications could be reduced to 7 by using 18 additions/subtractions.
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I, x I matrix-mtrix product: A-B-C

aa "aa b b 1b b o o 0 0

12, 11 11 121 13 14 11 121 191 14

a a a a bb Ibb 0 0 10 0

31 a2 a,a 31 32~ 33 34 31 321 33 It,

a aI'a a b b 'b b 0 0
1 4113V441 I.21 4#3 4411421,43*45.
1 I L L4

1. Partition A,B,C into four 2 x 2 submatrices.

12 11 12 111 12

[A A B B2r22
21 1 22J 1 2 1' 2

2. Apply Strassen's scheme to the submatrices.

M-(A -A )(B *B ) C 1M+M-M4
1 1 + 22 21 22 11 1 2 5. 6

M-(A I. )(BI (B ) C 2I-M+M
2 11 22 II 22 3 5 -

M-(A -A )(B +B ) C-=B+N
3 22 21 11 12 6 7

M -(A +A )B C2 2 M -N iW -M
3. 11 12 22 5 7

M-A (B-B)
S ii 11 11.

M=A + (B -B )
6 22 21 I1

M-=(A +A )B
7 21 22 11

Figure 15. Strassen's method can be extended to larger matrices using a divide-

and-conquer strategy. in mltiplying two 4 x 4 matrices, the 7 products of 2 x 2

matrices indicated are taken. Since each 2 x 2 matrix product can be formed with

T scalar multiplications, only 77'149 scalar products (instead of the usual 614)

are needed. In general, two n x n matrices can be multiplied using O(n2"81 )

arithmetic operations (both multiplications and additions/subtractions), instead

of the usual O(n), via this technique.
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ALGORITHMIC COMPLEXITY
Part 4

by
Lyle A. Anderson

SYSTEMATIC ANALYSIS OF ALGORITHMS

ABSTRACT

The limits and methods involved in the systematic analysis

of algorithms are explored. A review of the existing work

in this field is presented. A specific method of systematic

analysis is developed. The method consists of (1) the

translation of algorithm loop structures Into recursive

subroutines and recursive subroutine references, and (2) the

semantic manipulation of expressions representing the joint

probability distribution function of the program variables.

A new delta function is introduced to describe the effects

of conditional statements on the joint probability density

function of the program variables. The method is applied to

several simple algorithms, sorting and searching algorithms,

and a tree insertion/deletion algorithm.
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CHAPTER I

INTRODUCTION

This chapter is divided into two parts. in the first

part we will state and discuss the problem in computer

science that will be addressed in the rest of the thesis.

In the second part we will give an overview of the remaining

chapters of the thesis.

Statement of the Problem

This thesis is concerned with the systematic analysis

of algorithms. In order to understand what it is about, we

must answer these three questions:

1. What are algorithms?

2. What is the analysis of algorithms?

3. What is the systematic analysis of algorithms?

We will also be discussing a fourth question:

4. What are the limits of systematic analysis?

This will involve a short discussion of:

a. Godel's Theorem

b. The Halting Problem

c. Characteristics of the Completeness Problem
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What are Algorithms?

Horowitz and Sahni (7) give this definition of an

algorithm: "Algorithm has come to refer to a precise method

useable by a computer for the solution of a problem." In

order to be considered an algorithm the method must have the

following characteristics:

1. A finite number of steps of one or more operations

2. Each operation must be definite, i.e. unambigously

defined as to what must be done

3. Each operation must be effective, i.e. a person with

pencil and paper or a Turing Machine must be able to

perform each operation in a finite amount of time

4. Produce at least one output

5. Accept zero or more inputs

6. Terminate after a finite number of operations

What is the Analysis of Algorithms?

Webster's New Collegiate Dictionary defines analysis as

"an examination of a complex, its elements, and their rela-

tions". in the analysis of an algorithm we are interested

in the relationship between characteristics of the inputs

and the performance characteristics of the algorithm. Fore-

most among these characteristics is the execution time of

the algorithm; that is, the relationship between some sizing

parameter of the input data and the amount of time it takes
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for the algorithm to get an answer. other performance

parameters of Interest Include:

1. Number of comparisons in sorting/searching

algorithms

2. Number of scalar multiplications/divisions in

algebraic algorithms, such as matrix-matrix product

3. Number of input/output operations required for

problems dealing with database access

4. Size of the computer memory required to solve a

problem

All of these performance parameters have one thing in

common. They all can be transformed into the cost of com-

puting the answer. This is the reason that the analysis of

algorithms Is so important. Aside from its intellectual and

recreational aspects, the economic aspects of the analysis

of algorithms are important to the users of computer sys-

tems. Especially in the computer-based industries, time is

money. An algorithm which takes twice as long to run may

not only cost twice as much to run, but may not even get

done in time to be useful. In other applications, accurate

predictions of probable running times are needed before aI
system Is actually built. These predictions can help make

k ouverall cost and feasibility estimates for a proposed systemI
more accurate. In these kinds of applications the analysis

of algorithms Is a software engineering tool. Other poten-

tial uses are In automatic program synthesizers or in

4-3



compiler systems for very high-level languages. (1]

In most cases the analysis of an algorithm consists of

determining the time behavior of the algorithm. This is not

the only measure of a program for which an analysis can be

performed. An algorithm can be analyzed by "instrumenting"

it, meaning that the values of the parameter of interest are

recorded in a counter variable which is added to the algo-

rithm. We often do this when analyzing for the time

behavior of an algorithm. For this reason the analysis of

different measures have a great deal in common with the ana-

lysis of time behavl'or. When we talk about the analysis of

an algorithm, we will only be concerned with its time

behavior unless otherwise stated.

What is the Systematic Analysis of Algorithms?

There are two basic ways to approach the analysis of

algorithms. The first way is to approach each alogrithm as

a separate new problem and to find the solution by appealing

to previous experience with similar problems. The second

way is to make up general rules which apply to "all"

algorithms and to apply these rules step by step to the

algorithm being studied.

The first way is very suitable to humans who come

equipped with _9_rReaLdeal of problem-solving and pattern-

recognition ability. It is not so well suited to the

digital computers of today because they are not so equipped.
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The more systematic approach of the second way to analyze

algorithms is better suited to implementation by digital

computers. we shall say that the human approach involves ad

hoc procedures, and the computer approach involves

systematic procedures.

What are the limits of Systematic Analysis?

The gross limits of systematic or automatic algorithm

analysis are known.

1. We know that systems can be built which will analyze

simple programs. [1,3,4]

2. We know that no completely automatic system or com-

plete formal system can be constructed whi-ch can

analyze all algorithms. This fact is firmly estab-

lished by computability theory. (15]

In between the simple programs and all possible programs

there is a lot of ground which can be covered.

What We Can Do

Wegbreit [1] has built a system which can analyze

simple LISP programs automatically. Cohen and Zuckerman (3]

have built a system which greatly aids in the analysis of
algorithms written in an ALGOL-like programming language.

Their system helps the analyst with the details of the

analysis while requiring the analyst to provide the branch-

ing probabilities. Wegbrelt [2] developed a formal system
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for the verification of program performance. His technique

can also be used to provide the branching probabilities

which are needed. Recently, Ramshaw [5] has shown that

.*ere are problems with Wegbreit's probabilistic approach

and has developed a formal system which he calls the

Frequency System. There are problems with the Frequency

System, which Ramshaw points out in his thesis [5]. We will

show that some of the problems in the Frequency System can

be overcome.

What We Cannot Do

Douglas R. Hofstadter (15] gives a beautiful exposition

of the nature of the whole question of computability and

decidability and the wide-ranging and unexpected topics upon

which it touches. The formal study of this subject springs
U

from GOdel's Theorem which Hofstadter paraphrases:

"All consistent axiomatic formulations of number
theory include undecidable propositions."

The undecidability of the Halting Problem is an example

of one such "undecidable proposition." Stated in terms of a

Turing Machine, the Halting Problem is this:

Can one construct a Turing machine which can decide
whether any other Turing Machine will halt for any
input, when given an input tape containing a
description of the other Turing Machine and its
input?

A negative answer to this question was given in 1937 by

Alan Turing. The argument which he used is called a diagonal

method. This method was discovered by Georg Cantor, the
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founder of set theory. It involves feeding a hypothetical

Turing Machine, which could decide whether any other Turing

Machine would halt for any input, a description of itself

which has been modified in a particularly diabolical manner.

Hofstadter's book (15] devotes much of its 740 pages to the

variety of topics to which this method may be applied.

It appears to us that undecidability and incompleteness

creep into formal systems when statements which can be

interpreted as being about the system itself are allowed.

In our discussions we will try to avoid these kinds of

questions, and thereby the completeness problem.

Overview of the Thesis

We have chosen to organize this thesis along the lines

which were taken in thle development of the research upon -

which it is based. We feel that the road taken is interest-

ing in and of itself. For this reason we will point out the

"dead-ends"M which periodically blocked our path.

The first step which we took was a survey of the work

which had been done in this field. In Chapter 2, we will

discuss the current state of the art of algorithm analysis.

We will point out the areas where results are firmly estab-

lished and the benefits of particular procedures that are

known. We will examine some of the recent advances both to

see how they work and to discover the kinds of problems

which they cannot solve.
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When this survey was completed we formulated a plan-

The approach which we used was to start from the program

statements themselves. We attempted to determine just how

much could be learned from manipulations of the programs

using various translation schema. We restricted ourselves

to programs written in a "structured" language. SPARKS,

developed by Horowitz and Sahni (7,9] , was chosen as the

language for representing algorithms for the same reasons

they used it in their books.

Our initial work revealed a transformation which proved

to be effective in analyzing several deterministic algo-

rithms in a straight-forward manner. Chapter 3 describes

this technique which involves the transformation of all

looping structures of a program into a series of recu:sive

subroutines and recursive subroutine calls. Because this

process is designed to follow the syntax of the algorithm,

we refer to this as a "syntax-directed translation." The

program characteristic to be analyzed is selected, and the

recursive program statements are transformed into recurrence

equations. The analysis is done by solving the recurrence

* equations. This is not always easy (8]. For this reason we

concerned ourselves with solving as well as setting up the

recursions.

In Chapter 3, we will examine some very simple, deter-

ministic algorithms (i.e. ones for which we know the inputs

exactly), then some very simple probabilistic algorithms
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(i.e. ones where we only know some characteristics of the

inputs) . While looking at these examples we will discover

the "problem of the conditional statement." We started with

the FINDMAX algorithm which was analyzed both by Knuth (6]

and by Ramshaw [5]. We soon discovered that when the

statistical beh~vior of algorithms is being analyzed, the

distribution from which the input data is drawn is an

important factor in the running time. While we could solve

the problems relating to distributions in algorithms such as

FINDMAX, we often found ourselves using information from

"outside the system".

Chapter 4 presents our formal approach for handling the

conditional statement. This approach is to use statements

about the distributions of program variables directly in the

analysis of the algorithms. We found that we had to study

the propagation of the distributions of the program vari-

ables through the program. As a result, we developed a

"calculus" for the behavior of the distributions themselves.

We will use this method to analyze the probabilisticI

algorithms from Chapter 3.

We will then move on and apply the techniques to some

sorting and searching algorithms in Chapter 5, and to a

miscellaneous problem in Chapter 6. Chapter 7 is a summary

of the work and an outline of possible future efforts.

Appendix A contains some details of the work discu~ssed

in Chapter 5.
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CHAPTER 2

CURRENT STATE OF THE ART

In this chapter, we will discuss what is currently

known about the analysis of algorithms. The chapter is

divided into two sections. The first discusses what we call

ad hoc procedures, and the second discusses current syste-

matic approaches.

Ad Hoc Procedures

We are going to characterize an analysis technique as

"ad hoc" if we cannot see a way to easily remove the

*intuition" required to get the answers. The analysis proce-

dures which are so categorized are more suited for use by

humans than for the programming of a computer. They take

advantage of the rich background of experience which forms

the context of a human's ability to perform such analysis.

We will present the techniques of three sets of researchers

in order of increasing mathematical elegance of the tech-

niques. A method with a high degree of elegance is very

hard for the uninitiated to understand, but facilitates

quick and meaningful communication between the initiated.

.4-10



de Freitas and Lavelle

The most straight-forward, and hence the least elegant,

way to analyze an algorithm is to write down how long each

statement takes and to add up the result. S. L. de Freitas

and P. J. Lavelle describe "A Method for the Time Analysis

of Programs" [4] which does the first part of this proce-

dure. Their method consists of superimposing timing data

about the assembly/machine code produced by a FORTRAN

program on the program source listing. The programmer may

then u~se the timing information to identify inefficient

portions of the program. The method does not calculate the

repetition counts for loops, but presents the time required

to perform one iteration of a loop. it therefore requires

the application of all the ad hoc analysis techniques we

* will describe, but allows the analyst to come up with exact

answers to time performance questions. Even though it uses

a computer program, it can still be considered an ad hoc

technique.

Aho, Hopcroft and Ullman

Horowitz and Sahni

Aho, Hopcroft and Ullman (10] and Horowitz and Sahni

[7] describe a level of analysis which is one step removed

from the machine dependent technique described above. This

level deals with the statements of the algorithm as primi-

tive entities and largely ignores the variation in execution
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time between them. This type of analysis seeks order-of-

magnitude or "Big O" performance data. In their excellent

introductory text (7], Horowitz and Sahni are primarily

interested in this kind of analysis. They introduce a

methodology which is very close to the high level "code" of

the algorithm to be analyzed. Aho, Hopcroft and Ullman [101

give an excellent presentation of the various computer and

computability models which have been used.

Knuth's Analysis Techniques

It would be unfair to imply that Knuth's techniques are

all ad hoc. Nothing can be further from the truth. Donald

E. Knuth, perhaps more than anyone else, has established the

definitions and directior,- of algorithmic analysis (6].

Jonassen and Knuth present an ad hoc tour de force in "A

Trivia/ Algorithm Whose Analysis Isn't" [8]. In the begin-

ning of his book [6], Knuth sets down the tools and techni-

quts which may be brought to bear during the analysis of an

algorithm. It is this grouping of techniques which we refer

to as wad hoc":

I. Mathematical Induction
2. Sums and Products
3. Elementary Number Theory and Integer Functions
4. Permutations and Factorials
5. Binomial Coefficients
6. Harmonic Numbers
7. Generating Functions
8. Euler's Summation Formula
9. Combinatorics
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The application of these techniques requires a consid-

erable amount of intuition and experience in the analysis of

algorithms. The analyses which result are characterized by

a high degree of abstraction.

Systematic Approaches

We now begin a discussion of systematic approaches to

the analysis of algorithms. These methods are characterized

by the exposition of a 'theory" which is applied consis-

tently in the analysis of algorithms. We will discuss three

manual approaches in order of increasing effectiveness, and

then discuss two automatic analyzers. The manual approaches

which we will discuss are:

1. Electrical Network Analysis

2. Wegbreit's Probability System

3. Ramshaw's Frequentistic System

For each one we will cover the theoretical basis of the

system, describe how it works, give an example, and discuss

the inherent weaknesses and their causes.

Electrical Network Analysis

Knuth mentions the applicability of Kirchhoff's Current

Law to the analysis of algorithms and applies it quite often

(6]. He also mentions that Kirchhoff's Voltage Law is not

applicable to the analysis of algorithms. An attempt to

introduce Kirchhoff's Voltage Law into the analysis of

4-13
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algorithms was proposed by Kodres [133 and extended by

Davies. The following section closely follows Davies (14].

A generalization of Kirchhoff's Voltage and Current Laws is

applied to the analysis of program or algorithm flowcharts

in the following way:

1. the number of executions of a statement corresponds

to the current in an electrical circuit

2. the execution time of a statement corresponds to the

resistance of a circuit element

3. the total time spent executing the statement

corresponds to the voltage across an electrical

circuit element

Kirchhoff's Current Law states the the sum of all

currents at any circuit node is zero. By assigning a "sign"

to the direction of flow in the flowchart, it is easy to

show that this is true for the number of executions in a

flowchart. The number of times into any node in the f low-

chart is equal to the number of times, out of that node.

Kirchhoff's voltage law states that the sum of all voltage

drops and emfs around any circuit loop is zero. The

analogy for the voltage law breaks down in the case of

parallel connected sections in a flowchart. Here Kodres in-

troduced the idea of placing "current" sources in each

closed loop in the flowchart. The value of the current

source is equivalent to the number of times the loop is

executed.
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In the examples which follow, this notation applies:

Pt is the fractional execution count for the true (t)

branct: of an if statement

T is a prefix that indicates that the quantity is an

execution time for a program block or element

(Examples are TA, TCf)

n is the number of executions of a loop body

The expressions which are given with each program

construct represent the equivalent "voltage" or total

execution time of the block in question.

The structured programming constructs involving closed

flowchart loops are translated as follows:

* if-then-else is equivalent i
to a single statement

block with a value of II I
Pt(TCt+TA) + (I-Pt)(TCf+TB) i i---

1 ITCt I ITCf
II I I I

/ \ -- I
/Ic \t I

\ / I

I I
\I fIIf I Vl-rT--T

I I I TA I TB' j' I T 1I I I
I I I A I I I I I

I<. "-I- --T
I I

-7-I
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0 do-while is equivalent to
a single statement block F
with a value of I

n(TC + TA) + TC
tf

/\ I ITCt -TI 1 c \I 
IC t IJ I I

/ i\ I
\ / _ I I----F

I TI ITAV I A I I II f 
II I I* I

I I

9 do-until is equivalent to
a single statement block

with a value of -- _-m(TCf + TA) + TA + TCt I

f II I I -1--

I ITC I
/ \ I I I/ c \t 

I
\ / ' I\ / IA 

I TC

f I T1
I I
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The limit of this approach is clear and has been

pointed out by all who have written about the technique.

The difficult part of the analysis of algorithms is the

determination of the number of times a loop is executed or

in this analog, the value of the current source. However,

if one could solve this problem, then this technique

guarantees that one can get the solution to any structured

flowchart.

Wegbreit's Probability System

Wegbreit's systematic approach to the analysis of

algorithms was introduced in an article on "Verifying

Program Performance" (2]. The analysis of the algorithm is a

natural by-product of proving that the program/algorithm is

correct, and a refinement of the use of well-ordered sets,

first suggested by Floyd. The algorithm is instrumented to

record the desired performance parameter. Then the appro-

priate probabilistic input assertions are made about vari-

able probability distributions and inductive assertions are

shown to hold at intermediate stages in the algorithm. When

one of the inductive assertions can be shown to be a loop

invariant it can be manipulated into a statement about the

algorithm's performance. The important advance of

Wegbreit's probability system is that it sets out to

calculate the branching probabilities in order to determine

average computation time.
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Ramshaw [5] states that this method is based on the

ideas of Floyd and Hoare. It uses formal reasoning about

predicates of the form Pr(P) - e, O<e<1. Which means that

the probability that the predicate P is true is equal to the

real-valued expression e. Ramshaw has shown [5] that systems

of this form have problems with a very simple program which

he calls the Leapfrog Problem:

Leapfrog: if K = 0 then K 4- K + 2 endif

We assume that K can take on the values of I and 0 with

equal probability, i.e.,

(Pr(K=0)= ] /\ (Pr(K=l)= ]
2 1

The output assertion which one would expect to get is:

1 I

However, all that can be asserted using a Floyd-Hoare system

is:

Pr([K=I] \/ [K=2]) = 1

This is not particularly informative or of much use in

subsequent portions of the program since all of the

information about the distribution of the input has been

lost.

Ramshaw's Frequentistic System

In his Ph.D. dissertation, Ramshaw (5] reformulates the

ideas about probabilistic assertions into what he calls

*frequentistic" assertions. In this way he "avoids the

rescalings that are associated with taking conditional
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probabilities.* Ramshaw's frequency "is like probability in

every way except that it doesn't always have to add up to

one." He defines a frequentistic state as a collection of

deterministic states with their associated frequencies.

Atomic assertions are statements of the form Fr(P)=e, where

P is a predicate and e is a real-valued expression.

Ramshaw applies his frequency system successfully to

the Leapfrog problem.

Leapfrog: if K = 0 then K 4- K + 2 endif

His input assertion is:

[Fr(K=O)= ] /\ [Fr(K=l)= ]

This means that the frequency associated with the state K=O
I

is 2 and the frequency associated with the state K=l is also

The total frequency associated with the variable K is

11
2

So far we have followed Ramshaw's thesis closely. The

following is a slightly different interpretation of the

application of his method which arrives at the same answer.

We present it here in this way because it seems a little

more formal than his presentation.

The if-test on the predicate { K=O } conjpins the

branch atomic assertion [ Fr(K O) = 0 ] to the TRUE

out-branch. This is derived by setting the frequency of the I
negation of the If-test predicate equal to zero. For the

FALSE out-branch, the branch atomic assertion is [Fr(K-O) -

0]. This simply states that the frequency with which the
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if-test predicate is true in the FALSE out-branch is zero!

Each atomic assertion in the input assertion is

individually resolved with the branch atomic assertion, in

the manner of theorem proving systems. If there is a

contradiction, then that conjunct of the input assertion is

dropped. In the TRUE branch we have:
[Fr(K=0)= ] /\ [Fr(K#0)=0]

2

which is logically consistent, but

[Fr(K=I)= ] /\ [Fr(K#0)=0]

is a contradiction and is dropped. In the FALSE branch we

have:

[Fr(K=O)= ] /\ (Fr(K=O)=O]

which is a contradiction, and

[Fr(K=1)= ] /\ [Fr(K=O)=O] = [Fr(K=I)= ] /\ (Fr(K#l)=O]

which is a valid assertion.

In the TRUE branch, the assignment statement chanqes

the deterministic states of K to have the value K+2.
[FrlK=2)= ] /\ [FrlK#2)-0]

The assignment statement maps all of the frequencies of

the states of K in this branch into the fcequency of the

state K+2.

At the final join, the output assertion is the

conjunction of the two branch assertions, namely:
[FrlK=2)= ] /\ [Fr(K#2)=0] /\ [FrlK-1i)= ] /\ [FrlK#1)=0]

2 2

This statement contains the logical contradiction:
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Unlike the case with the restriction at the if-test, a

contradiction at the join (which must -be between atomic

assertions from separate out-branches) is resolved by

conjoining each branch's contribution to a given

frequentistic state within a single predicate. In this

case:

[Fr(K#I)=0] /\ [Fr(K#2)=0] ==> [Fr(K~l /\K#2)=0].

We arrive at Ramshaw's output assertion:

[Fr(K=I)= ] /A [Fr(K=2)=1] /\ [Fr(K@I / K#2)=01.

This result is a little more useful! It says that K is

either 1 or 2 and that it takes on either value with equal

probability.

Now, one would think that all this would lead to a very

powerful method. It does. Ramshaw shows how to apply this

straight forward approach to the COINFLIP algorithm in

Chapter 5 of his thesis [5]. His analysis is very similar

to the one that we will give in Chapter 4. But, instead of

continuing to use the more straight-forward approach,

Ramshaw follows Kozen's semantics for probabilisitic

programs, applies measure theory, and shifts to a "theorem-

proving" approach. He uses the following rule of

consequence to prove theorems about the conditional

statement:
I-CAIP]S[B], J-[AI.P]T[C]

l-[A]if P then S else T fi[B+C]

This rule of consequence means that, if the truth of

predicate A given that P is true implies that B is true
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after the execution of program section S, and if the truth

of predicate A given that P is false implies the truth of

predicate C after the execution of program section T, then

if A is true before the if statement involving P, S, and T,

then it follows that either B or C is true afterward.

Ramshaw's frequency system can handle some of the

programs which Wegbreit's can't, because Ramshaw avoids pro-

blems of renormalizing probabilities. But because Ramshaw

chose to use this rule of consequence for the if statement,

his system still can't handle the "useless test":

if R then nothing else nothing endif.

Ramshaw must include a special rule of consequence for

the "useless test" (one that says that nothing happens).

This seems to be symptomatic of those formal systems of

algorithm analysis which have grown from the work in program

verification based on theorem proving.

We have just given a taste of Ramshaw's frequency

system. Readers who are interested in learning more about

it should see Ramshaw's dissertation [5).

Automatic Analyzers

We now turn our attention to the current state of

automatic analysis. We will look at two systems which have

been reported in the literature.
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Wegbreit's METRIC

METRIC [1] is a system, written in Interlisp, which is

able to analyze simple LISP programs and produce closed-form

expressions for the parameter of interest in terms of the

size (in some sense) of the input. The analysis of a

program takes place in three distinct phases:

i. Assign a cost to each primitive operation. This

process continues as long as the procedure is not

recursive. Blocks of primitive operations are

assigned the cost of the sum of their individual

costs.

2. Analyze the recursive procedures. This phase ana-

lyzes how the recursion variables change from one

iteration to the next. A series of difference equa-

tions is generated by projecting this recursive

structure onto the set of integers.

3. Solve the difference equations. This phase finds a

closed-form expression for the difference equations.

Wegbreit has implemented solutions to these equa-

tions based on: direct summation, pattern matching,

elimination of variables, best-case/worst-case anal-

ysis, and differentiation of generating functions.

In Wegbreit's processing of conditional statements, he

assumes that all tests are independent. This is perhaps the

most serious flaw in the approach. Again the problem stems

from the difficulty in handling conditional probabilities.
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Cohen and Zuckerman's EL/PL

Evaluation Language/Prog ramming Language [31 is a

system that consists of an ALGOL-like language for express-

ing algorithms (PL) and a language for analyzing the result-

ing algorithms (EL). The PL statements are compiled by the

PL compiler into a symbolic formula representing the time

for executing the program. This "object deck" is present to

the EL processor. The EL processor, in turn, provides a

human operator with the means to manipulate the symbolic

formula into answers. EL runs in an interactive mode. it

allows the operator to bind formal or numerical values to

the execution counts of loops and to assign formal or numer-

ical values to the probabilities of boolean expressions.

Here, as with METRIC, the operator has to provide the

critical data on the branching probabilities. The branching

probabilities of different conditional statements are

assumed to be independent of each other. This seems to be

the most serious defect in the automatic analyzers to date.
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CHAPTER 3

SYNTAX DIRECTED TRANSLATION APPROACH

In this chapter, we will discuss our approach to the

systematic analysis of algorithms. The presentation follows

the order in which the work actually progressed. Our

research was sparked by the arrival of Ramshaw's thesis [5].

It seemed to us, at the time, that the theorem-proving

approach was overly mathematical. There must be, we said, a

way to look at this which is more closely related to the ,

code and more understandable by programmers. Wegbreit's

article on METRIC (1] got us thinking about the utility of

translating program loops into recursive subroutines.

Loops make the analysis of algorithms interesting.

Without loops it's once through and done. Straight line

code is easy to analyze. When you add some branching state-

ments it gets a little harder; but it's the loops which make

an analysis really interesting. The first observation is

that there has been a lot of work done on solving recurrence

relations. If we can convert all of the different loop

structures to recursive subroutine calls, then we can apply

the same techniques to attempt to analyze all kinds of
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loops. In fact, one can do exactly that, as Wegbreit Ill

points out. He also points out that if there are no

conditional branches in the loops, then there is an exact

solution to the recurrence relations. our procedure is

basically quite simple:

1. Convert all loops into recursive subroutine calls

2. Convert the recursive subroutine calls into

recurrence relations

3. Solve the recurrence relations

Solving Rec-urrence Relations,

There are three basic methods for solving recurrence

relations:

1. Inspect the relation to see if you have seen it

before in another problem, or recognize a general

form

2. Try a few iterations to get the feel of the recur-

rence relationships and the way the relations

behave, then guess a closed-form answer, and prove

its correctness by induction

3. Apply one of the standard techniques to solve the

recurrence relation

Within these simple steps are contained a lot of art

and experience. G. S. Lueker in a recent tutorial *Some

Techniques for Solving Recurrences" [16] gives an excellent

introduction to these methods. Advanced techniques can be
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found in Knuth [6], and especially Jonassen and Knuth [8].

We shall list some of the techniques mentioned by

Lueker [16].

1. Summing factors -- where one tries to manipulate the

recurrence relations by addition of expressions for
adjacent terms in the hope that the sum will

"telescope" into a few terms, one of which is the
nt h term.

2. Characteristic equations -- where the problem is

mapped into that of finding the roots of a
characteristic system of polynomial equations. This

approach works for linear recurrences with constant
coefficients.

3. Range transformation -- where the unknown coeffic-

ents in the recurrence relations are transformed by
some function which turns an unknown problem into a

known problem, or one that can be solved by another
technique.

4. Domain transformation -- where the index value is

transformed to make the progression of values
additive instead of some other function. Once this

is done, summing factors can often be used.
5. Generating functions -- where the problem is

transformed into another domain in a way similar to
the transformation of a time-domain function into a

frequency-domain function by a Fourier transform.
This method is particularly powerful for handling

probabilistic aspects of solutions.

Our work in this thesis, Involved some very familiar

recurrences for which the answers were easily guessed.
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Translating Loops into Recursive Subroutines

We will limit our discussion to algorithms expressed

using structured programming constructs only. This is not a

particularly restrictive limitation since the structured

programming constructs are all that is theoretically needed

to describe any alogrithm. For this reason and the fact

t :at such programs are easier to maintain, most new

programming is being done using structured programming

methods.

We will adopt SPARKS as the language for expressing

algorithms. SPARKS was developed by Horowitz and Sahni in

1976 (91 and sightly modified in 1978 [7].

We have developed a formal syntax-directed translation

schema for converting structured loop constructs into

recursive subroutines.

Given the input syntax of the FOR loop:

<label>: for <var> 4- <exp,> to <exP 2 > by <exp 3> do

<statements with live variables>

repeat

we get the recursive syntax:

start 4- <expl>; stop 4- <exP 2 >; Incr 4- <exP 3 >

g <var> 4- start

call <label>(<var>,incr,stop,{ live variables } )

procedure <label>(var,incr,stop,{ live variables })

if SGN(incr) * ( stop - var ) > 0 then

<statements with live variables>

var 4- var + inc

call <label>(var,incr,stop,{ live variables } )

endif
end <label>
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I
The live variables from <statements> are those

variables which are used or created in <statements> and have

a scope that extends outside of <statements>.

The procedure for converting DO WHILE loops to

recursive subroutine calls is quite similar.

<label>: while < relational expression > do

< statements with live variables >

repeat

The recursive syntax is:

call <label>( (live variab:,,s, relational variables)
procedure <label> ([live variables, relational variables))

if < relational expression > then

< statements with live variables >

call <label> ((live variables,

relational variablesend if

end <label>

Simple Examples

do while example (Algorithm for n n)

The following algorithm is a modification of one by

Horowitz and Sahni (10].

procedure N to the N

read RI
R2 4- 1; R3 4- RI

Tl: while R3 > 0 do

R2 4- R2 * RI; R3 4- R3 - 1

repeat

print R2

end Nto the N
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This procedure contains a single while loop which we

wish to analyze. The time behavior of this algorithm is

dominated by the number of times that the body of the while

loop is executed. We first translate the while loop into a

recursive subroutine. The algorithm becomes:

procedure N to the N

read RI

R2 <- 1; R3 *- RI

call TI( RI, R2, R3

print R2

end N to the N

procedure TI ( RI, R2, R3

if R3 > 0 then
R2 4- R2 * RI; R3 <- R3 - I

call TI( RI, R2, R3

end if

end T1

Only program variable R3 has any effect on the course

of the recursion. Let i be the mathematical variable which

corresponds to R3, and T be the number of calls on the

subroutine. Then:

T 1, if i < 0
T(i) = I

1. 1 + T(i-l), if i > 0

The subroutine TI is called from the main program with

i - RI. Therefore, the recursion is solved by:

0

TI(RI) I = R1 + 1
j =R 1

The subroutine TI is called one time more than the value of

RI, which we expected.
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ODD/EVEN Print Example

This example is a little more difficult. It involves

an if statement, but one which is completely determined by

the starting number. ODD(t) is a built-in function which

returns True if its argument is odd, and False if the

argument is even.

procedure ODDEVEN ( N

I 4- N

while I > I do

Ta: print 'AAA'

if ODD( I ) then

I- I - 3

else

I -I +

end if

repeat

end ODD EVEN

The recursive form of the program is:

procedure ODDEVEN ( N )
14-N

call Ta(I)

end ODD EVEN

procedure Ta ( I

if I > I then

print 'AAA'

if ODD( I ) then

I4- I - 3

else

I -I + 1

end if

call Ta(I)

end if

end Ta
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Wegbreit [1] points out the idea for the next step and

goes into it in greater detail than we shall here. He

states, "The essential idea is to map a recursive procedure

P into a new recursive procedure whose value is the cost of

P." We are interested in the number of times that AAA is

printed. The recurrence relation for it is given by:

T 0, if i < I

Ta(i) I + T ( - 3 ), if i is oddaI a
1 + T ( i + 1 ), if i is even

Starting with the case where i is odd, we have:

Ta(i ) = I + T a(i -3)

Now, i0-3 is even so we have (assuming i0 - 3 > 1)

Ta(i ) = 1 + 1 + Ta (io- 3 + 1) = 2 + Ta(i o - 2)

Note that i - 2 is also odd.

We now examine the case when io is even:

Ta(i e ) = 1 + T a(i e+ 1)

Now, ie+l is odd, so we have

Ta (i e ) = 1 + 1 + Ta (ie+ I - 3) = 2 + Ta (ie- 2)

Since the recursions for the odd and even cases have been

transformed to eliminate the dependence on parity, we have

the new recurrence Lelatlons:

Ta() = 2 + 7a(i-2), if i>2

Ta (1) = 1Ta

Ta(0) 0

Whose solution is easily shown to be Ta(i) i.
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COINFLIP

COINFLIP is an algorithm which Ramshaw [5] uses. Here

we translate it into SPARKS. The built-in function RANDOMht

returns a value of Heads or Tails with equal probability.

procedure COINFLIP

I 4- 0

while RANDOMht = T do

Tc: print 'ok, so far!'; I 4- I + 1
repeat

print I, ' times!!'

end COINFLIP

The recursive version is:

procedure COINFLIP

1 4- 0

call Tc(I)

print I,' times!!'

end COINFLIP

procedure Tc( I

If RANDOM = T then hti

print 'ok, so farl'; I 4- I + 1

call Tc( I

end if

end Tc

The question "how many times will tails turn up in succes-

sioh?" is equivalent to asking how many times will 'ok, so

farl' be printed out. We see that:

T o, If RANDOM = H
T c(i) - I1 I + Tc (i+1), if RANDOMht = T

where T is the number of times that the statement labeledc
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Tc in the original program is executed. If RANDOMht returns

H the first time that it is called, then the statement is

never executed. If RANDOMht always returns T, then the

program does not terminate. The in-between cases are the

interesting ones. What is the expected value of i, i.e. the

expected number of times that 'ok, so far' is printed? To

answer this question requires an investigation of the part

that probability plays in the conditional statement. We

will come back to this question later.

FINDMAX

This algorithm has been used as an example by several

authors (5, 6, and 7]. It is the usual algorithm for

finding the maximum value of a set of numbers. This is the

first example which we have given in which the recursive

form of the algorithm is not obvious. For this reason we

will give the translation explicitly.

procedure FINDMAX( A, N, XMAX )

/* set XMAX to the maximum value in A(I:N), N>O. */

XMAX 4- A(l)
LI: for 1 4- 2 to N do

if A(M) > XMAX then XMAX 4- A(I); end if

repeat

end FINDMAX
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The recursive version of this program is:

procedure FINDMAX( A, N, XMAX )

/* set XMAX to the maximum value in A(l:N), N>O. */
XMAX 4- A(l); I 4- 2

call Ll( A, N, I, XMAX
end FINDMAX

procedure LI( A, N, I, XMAX)

if I < N then

if A(I) > XMAX then

TI: XMAX 4- A(I); end if
I 4- I + I

call Ll( A, N, I, XMAX)

end if

end LI

The next step is to convert the recursive algorithm

into a recurrence relation for the number of times that

control passes TI. In this case we are interested in the

number of times that a new maximum is found.

1 + T(A,n,i+l,A(i)) if A(i)>xmax
T( A, n, i, xmax) = I

J 0 + T(A,n,i+l,xmax) if A(i)< xmax

with the boundary condition T( A, n, k, xmax) = 0 for k>n.

Given a known input array, A(l:n) , this recurrence

relation completely determines the value of T. If this were

all that could be learned, then it would not be very useful.

The answer could just as well be determined by instrumenting

tie original algorithm with a test counter in the true

branch. In this case we observe that the true branch is

taken if the i-th element is the largest of the first i

elements. If p1 is the probability that A(l) is the largest
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of i elements we have:

T(A,i) = Pi + T(A,i+l)'

as a description of the average behavior of the algorithm.

At this point we have dropped the arguments of T which

return the wanswer" so that we can concentrate on the time

behavior.

If the elements A(i) are drawn from a uniform
1

distribution, then Pi = T and

T(A,i) = + T(A,i+l)

T(A,i) = 0, for i>n

Since the initial value of i is 2, the solution to this

recursion is easily shown to be T(A,2) H n - 1, where Hn is

the nt h harmonic number:

Hn  + 1 + 1+ .... +I

While we were able to get the correct solution, this

way of analyzing the algorithm is not suited for automation.

The insight into the distribution of the data and its effect

on the probability that the branch would be taken requires

human-like understanding.

The Problem of the Conditional Statement

At this point, our approach has the same problem that

plagues the Electrical Network approach--it works fine if

one knows the branching probabilities. It was at this point

in our research that we went back and studied the work of

Wegbreit and Ramshaw more closely. We noted the strengths
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and weaknesses which we described in Chapter 2. Knuth [5]

provides an analysis of FINDMAX which relies on some subtle

reasoning about left-to-right maxima among random permuta-

tions. Since we plan to teach a computer how to do this

analysis, we wanted to keep any real "thinking" out of it

until absolutely necessary. In Wegbreit's and Ramshaw's ap-

proaches, the fact that the program variables of interest

are random variables and have distributions is recognized.

However, most of their analyses are performed by making

assertions about the frequencies or probabilities of these

distributions, and then proving theorems about the

assertions. The problem of the "useless test" led us to

think that it might be useful to see what happened when one

followed the distributions themselves around the program.

At this point we had been concentrating so much on

understanding the true meaning of "differentially disjoint

vanilla assertions", the measure theory, and theorem proving

aspects of Ramshaw's frequency system [5], we had forgotten

that his treatment of COINFLIP dealt with the distributions

themselves. It was only after we had devised a major

portion of our approach that we realized the great similar-

ity between our's and Ramshaw's frequency system (as it

stood in Chapter 5 of his thesis [5]). We then recognized

that we had continued down the path of following the dis-

tributions, while Ramshaw had turned to follow the path of

proving theorems about frequentistic assertions.
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CHAPTER 4

DEALING WITH CONDITIONAL STATEMENTS

In this chapter we introduce the central idea which, we

feel, is either a new idea or one which has been inadequate-

ly expressed in the past. The problem with the conditional

statement stems from the normalizations required when taking

probabilities, so why not, we reasoned, put off taking the

probabilities as long as possible? Ramshaw's thesis (5] was

a key to this. We observed his abandoning of his raw

frequencies In favor of asserting predicates about frequen-

cies. Another key factor in our choosing this direction was

Jonassen and Knuth's paper on "A Trivial Algorithm Whose

Analysis Isn't" [8). Here were these nice joint probability

distribution functions (p.d.f.) which appeared from "direct-

ly translating the algorithm into mathematical formalism."

We set out to f Ind the rules that had to have been used to

get to these simple recurrence relations. Because we took

so many wrong turns on our way to our final ideas, we will

abandon our historical presentation in favor of a more

expository one. We also have to abandon our initial assess-

ment that Ramshaw's approach was "too mathematical*. There
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seems to be no way to avoid mathematics if one desires more

than the analysis of t he simplest algorithms.

Algorithms and Probability Distributions

Each execution of an algorithm can be thought of as a

random experimental sample from the universe of possible

input data. We will be concerned with the behavior of the

probability distributions associated with the program vari-

ables during execution of the algorithm. These probability

distributions can be thought of as the repository of all the

information about possible execution histories for an algo-

rithm. We perform the analysis of an algorithm's behavior

by manipulating these distributions to find probabilites for

various conditions. We can then use this information in any

of the analysis techniques (e.g., those given in Chapters 2

and 3), which work for known branching probabilities.

We begin by associating a random variable with each

algorithm or program variable. We will follow Ramshaw [5]

and differentiate between the two by continuing to represent

algorithm variables by upper-case character strings and

representing the corresponding random variable by the same

characters in lower-case letters. For example, the random

variable xmax is associated with the program variable XMAkX.

The value of the random variable x at any time In the

execution of the algorithm is the value of the corresponding

algorithm variable at that time. Unlike Ramshaw, we have no
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prohibition about mixing program and mathematical variables

in the same expression. In fact this will be how we get

some of our answers.

We define the probability set function, Px(A), to be.

the probability that the program variable X is contained in

the set of possible values A, i.e., Px(A) = Pr(X e A). If

the set A is countable, we obtain the discrete probability

density function (p.d.f.), fx(X):

fx(x) = Pr(X e A) I A = f some finite set of x's I (4-1a)

If we let the set A be the set of all values of {Xlx<X<x+dx}

we have the continuous probability density function, f (x):

fx(x) = Pr(X e A) I A= { x < X < x+dx } (4-1b)

We will deal with the discrete type of random variable

in our formalism because of the fact that all values within

a computer can be mapped onto a finite set of integers. By

staying with discrete representations, we avoid the need for

the concept of "differential equality" which Ramshaw (5]

introduced to bridge the gap between continuous variables

and program equality expressions. We will develop a nota-

tion which is very close to the calculus of finite differ-

ences. Some of the rules which we will use will be derived

from analogous rules in continuous probability theory and

the calculus of continuous variables.

Equations (4-i) can be generalized to any finite number

of program variables by thinking of the X as a vector of the

n ordered program variables and x as an n dimensional random
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vector. The random variables form a vector space in n and

fx(x) is a functional over that space.

The joint p.d.f. of the program variables describes the

state of the program up to a point in the execution of the

program. If we have a loop translated into a recursive

subroutine call, and if we can describe the joint p.d.f.

before the next recursive call in terms of the joint p.d.f.

entering the body of the subroutine, then we have a recur-

rence relation that we may be able to solve to get the joint

p.d.f. as a function of the number of calls on the subrou-

tine. This knowledge will allow us to calculate the branch-

ing probabilities at any step in the process and hence

complete the analysis of the algorithms begun in Chapter 3.

Let us now examine the behavior of the joint p.d.f.

with various programming constructs. We begin with the

conditional statement.

Theorem 1:

Tf R is a deterministic logical relation of the program

variables then, the conditional statement

if R then f St ) else ( Sf ) endif

a. Divides the joint p.d.f. entering the if statement
into two parts bys

1. setting to zero all terms of the joint p.d.f.

entering the then clause ( St ) for which R is

FALSE, and

2. setting to zero all terms of the joint p.d.f.

entering the else clause { Sf } for which R is

TRUE.
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b. Forms the joint p.d.f. leaving the endif from the

algebraic sum of the joint p.d.f.s leaving the two

clauses.

We will not present a formal proof, but will use

Theorem 1 as a rule and see how it handles situations for

which we have answers by other means.

The effect of the conditional statement on the joint

p.d.f. entering each clause can be represented in a compact

manner using a new type of delta function which we will

refer to as the Boolean delta. This new delta function is

closely related to the Kronecker and Dirac delta functions,

except that its domain is a Boolean space with possible

values True and False. The Boolean delta maps the Boolean

space into the numbers 0 and 1.

Definition
Let R be a deterministic logical relation of program vari-

ables, then the Boolean delta function

T 1 if R is TRUE6 (R) = I
I 0 if R is FALSE.

It is easy to see that the following properties hold:

6(R) " 6 (,R) = 0
6 (R) + 6 (,R) - 1

6(R) = 1 - 6 (R)
6 (R /\ S) = 6(R) - 6(s)

\/R S) 6 (R) +- 6(S) - 6(R) - 6(s)

With these properties one can find the Boolean delta of

any Boolean expression. We can now state a theorem about

the effects of the "useless test" on the joint p.d.f.
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Theorem 2

Let fx(X) be the joint p.d.f. of the n program variables

XX2. at a point in an algorithm just prior to the

"useless test",

if R then nothing else nothing endif

where R is a deterministic logical relation on the program

variables X, and let gX(x) be the joint p.d.f. of the

program variables after the join at the endif, then gX(x) -

fx(x)•

Proof:

Using Theorem 1 and the Boolean delta 6 (R) we have the

augmented algorithm:

if R

then f fx(X) " 6 (R) }

nothing

else { f x) 6 (,R) }

nothing

endif { gX(x) = fx(x)6 (R) + fx(X) 6 (-R) }.
{gx) = fx(x) • 6(R) + 6 (-R) ))
{gXx) = f M

Q.E.D.

This discussion of the joint p.d.f. of the program var-

iables is very close to Ramshaw's [5] frequentistic states.

We can show that Ramshaw's frequentistic assertions can be

derived from marginal or joint p.d.f.s. We depart from

Ramshaw is that we will stay with the rules for the trans-

formation of the joint p.d.f. by the algorithms instead of

moving to the next higher level of abstraction, i.e. rules

for the transformation of assertions about the marginal or

joint p.d.f.s. It was this abstraction which destroyed the

ability of Ramshaw's system to handle the "useless test'".
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LEAPFROG Revisited

In order to get some understanding of the effects of

simple assignment statements, let us look again at LEAPFROG.

Leapfrog: if K=O then K<-K+2 endif

The input joint p.d.f. to Leapfrog is

1 2

which simply means that Pr(k=O) = , and Pr(k=l) =

The augmented program would be:

if K=O then { 6 (k=O)(1 6 (k=O)+1 6 (k=l))

2 21 6(k=0)

K 4- K+2 { 6((k-2)O) }

Selse S(ko oc 6(k=O)+!6(k=l))
(ele]2 2

endif 16k2 + 6kl
2 2

Which is exactly what we should get.

In handling the assignment statement, K 4- K+2, we

observed thdt it maps k as follows:

k before I k after

-2 0

0 2
1 3
2 4
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In general, if we wish to keep the equations in terms

of the original variables, we have:

[ xi 4- xi + c

<Xl'X 2 ,1,xi,'Xn> -* <XlX 2 ,...,xi-c,...,Xn>.

Next we will look again at the COINFLIP algorithm. To

do that we need some rules about the effects of a

conditional statement which contains a non-deterministic

part. We can easily transform a non-deterministic relation

into a non-deterministic assignment followed by a

deterministic conditional statement. For example:

if X = RANDOMht then { St } else { Sf } endif

becomes

Y 4- RANDOMht

if X=Y then { St } else { Sf f endif.

Theorem 3

Let fx) be the join, p.d.f. of the n program variables

XIX 2 ,...,Xn in the _gorithm just prior to the conditional

statement

if R then { St } else { Sf1 endif

where R is a logical relation containing a finite number, m,

of random (possibly pseudo-random) functions RANDOMfj. Let

R' be derived from R by replacing each instance of RANDOMfj
with a reference to a new program variable Yj, then the fol-

lowing sequence of statements are equivalent to the original

statement:

Y = RANDOMfl

Y2 = RANDOMf2

= RANDO~fm

If R' then [ St t else f Sf f endif
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Theorem 4

Let fx(x) be the joint p.d.f. of program variables

X , X2, ...,Xn which have been defined, and let Y be a unew"

variable defined by the statement Y 4- RANDOMg, where

RANDOM generates a statistically independent random numberg
from distribution g(y), then the joint p.d.f. after this

statement, hz(z), is

hz(z) = fx(x)'g(y)

where,

z = <xl,x2 ... ,Xny>
P ~~~Z =<XI,2..X,>

l12' . fnf>
It is now time to examine the general assignment state-

ment between two program variables. We will use a memory-

to-register, register-to-memory model for the assignment

statement. This will allow us to have the statement X 4- X

be a NOOP in the formalism without any special rules. We

introduce the notation

-'X

to mean the summation over all values of random variable xi.

This is the discrete equivalent of the definite Integral.

When it is applied to a function of x , the result does not

depend on x i If this summation is done symbolically, all

occurences of xi are removed from the equation of the

result. Here are some properties of this summation which we

shall use later:

E . f(xi) = 1 , when f(xi) is a'p.d.f.
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Lx f ( fix i ) 6 (xi=x.) ) = f(xi)

E ( f(x i ) (xi.<x j ) ) = F(xj)

where F(xj) = Pr( x e A ) I A = X < x is the cumulative

probability density function (c.p.d.f.) for f. Note that in

the case of discrete random variables we usually have to

worry about whether or not the c.p.d.f. is defined to

include xj or whether it is just "up to" xj. In the con-

tinuous representation we would not have to worry about this

because the two are equivalent.

Theorem 5

Let fx(x) be the joint p.d.f. of the n program variables

XIX2,...,Xn just before the program statement

Xi 4-

Then the joint p.d.f. after this assignment statement is

gX(x) E i fx(x) S(xi=r) ) 6 (r=x.)

The application of 6 (xi=r) within the summation takes

care of the case when xi is the same variable as xi. In the

cases where x i and x. are different variables, the rule

reduces to:

gx(x) = ( x (x) ) 6¢xi=x i

For an example we will look at a simple program which

interchanges the contents of two variables X and X2 using a

third variable X as temporary storage. The augmented

program goes like this:
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{ fx(XIx 2 ,x3 ) gx(xlX 2 )
6 (x3=0) )

X3 4- X1  { fx(Xix 2,x3 ) = gx(XlX 2 )
6 (x3=xl) }

X 4- X 2  { fx(x 1 Ix2 x3 ) = gX(x 3 ,x2)6 (xI=X2 ) )

X2 <- X3  { fx(xix 2 ,x3 ) = gX(x 3 ,x1 )
6 (x2=x3) )

I fx(xlx 2 ,x3) = gX(x 2 ,xl) 6 (x3=x2 ) )

Note that we need not have assumed that X3 initially

contained 0. We could have started with the general joint

p.d.f.:

fx(xlX2,x3 ) = g (xlx2,x3)

Then the first assignment would have resulted in

x3 4- x{ fx (xlX 2 ,x3) = (Ex g(x 11 x2 ,x3 )) 6(xl=X3 ) }

= gx(xlx 2 ) 6(x1=X3 )

where gxl,X2) = x3 g(xX 2 X3 )

The remainder of the example would be as before.

COINFLIP Revisited

We now have all the tools to handle COINFLIP and get the

real answer in a systematic way. The annotated main program

is:

procedure COINFLIP

1 4- 0 { f (i) = 6(i=0)

call TC(I) f fi(i) = g(l) ]

print i,' times.' f f1 (i) = g(i) i
The problem is to determine what the function g(i)

looks like. This is, of course, determined by the sub-

routine TC. We now proceed to the analysis of TC. Assume
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that the p.d.f. entering TC is f1 (i).

procedure TC(I)

Y 4- RANDOMh( f f(i) (yH + 16 (y-T)))
if Y = T then f f1 (i) "

6 (y=T) }

print 'OK, so far!'

i 4- 1 + I fi(i-1) • 6(y=T)

call TC(i) { gj(i) }

end if

f gj(i) + f1(i) • 6 (y=H) }

end TC

Where gj(i) represents the value of I returned by the recur-

sive call to TC. Now, the distribution f f (i-1) 16 (y=T) )

is presented to the next call of TC(I), so we must have in

general:

f (i) = f(i-l) • 6(y=T)

Since the variable Y is local to TC(I), it must be

eliminated from the joint p.d.f. that is returned. We will

refer to this process as "killing" a variable. This is done

by finding the marginal p.d.f. of I with respect to y:

f1(i) = ZIy fl(i-l) 1 6 (y=T) = lf,(i-1)

Note that if Y were to be treated as a global variable, this

step would take place as part of the RANDOMht assignment

statement. The initial condition from the main program is

f1 (i) = 6(i=0), so the distribution for the first recursive

call is:

f 1 ) = 161-1 = 0) 12
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and in general we see that
~f 1 (i) = ( )) 6 (i=j

where j is the number of times that 'OK, so farl' has been

printed out. This distribution represents the part of the

distribution which is "caught in the loop'. Each time some

of the distribution "escapes'. This corresponds to the

chance that Heads will turn up at any time. For each value
J, the joint p.d.f. that "escapes" is (2of~j the(~)1 y=

this joins the rest at the end if to give the final answer:

g(i) 2 K j (12 j =) l , e 1 0 1, 2, . .

We note that this is in fact a normalized p.d.f. What is

the expected value of I?

E(I)=Y 1i Yj (l)j6(i=j) ij e} 0, 1, 2, ...
1 011+ 1 2 2

1) .+..........2(0-1 + I'! + 2- + ..

by distributing and regrouping each fraction we get:

= 2 ++ + .+ ......

= ( + + ... + + + .. e + +jF+ ...

1+ + + .......1(2 2 4
1 2 l

If we had performed this analysis on Ramshaw's [5]

version of COINFLIP,

C 4- 0;

loop X 4- RANDOMht; C 4- C + I; while X=T repeat

we would have gotten the final joint p.d.f.:

6 (x=H) TJ (l) J 6 (c=j) , j e 1 1,2,3,... 1i2
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This contains all of the information that is in Ramshaw's

output assertion for the same problem [5, p.78]

[Fr(C<1)=O]/\[Fr(X=T)=0]/\ /\ [Fr(C-c,X=H) .,2 -

c >

FINDMAX Revisited

We will again follow Ramshaw [5, p.81] and use a

slightly different form of the FINDMAX program than was

presented in Chapter 3. We will replace the input array

A(I) of random variables by repeated calls to a random

number generator. This simplifies the notation somewhat

without sacrificing generality. We will return to the array

notation when we deal with the sorting algorithms. The

program is instrumented to record the number of times a new

maxfmlum is selected. The modified and annotated program in

recursive form is:

procedure FINDMAX( N,M

C <- 0; I <- 2 { 6 (c=o) 6(i=2) }
M 4- RANDOMf ( 6 (c=0) 6(i=2) f(m) }

call LOOPI ( N,M,C,I ) { g(n,m,c,i) }

end FIND MAX

procedure LOOPI (N,M,C,I) { h(n,m,c,i) }

if I < N then
- h(n,m,c,li) 6 (i<n) }

T 4- RANDOMf { h(n,m,c,i) 6 (i<n) f(t) }

if T>M then { h(n,m,c,i) 6 (i<n) f(t) 6 (t>m) }

C 4- C + 1 ( h(n,m,c-l,i)6 (i<n)f(t)6 (t>m)

M 4- T

( (m=t) (F h(n,m,c-l,i)6(t>m))6 (i<n)f(t) )
m
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[else] h(n,m,c,i) 6 (i<n) f(t) 6 (t<m) }

end if

{ (m-t) (T h(n,m,c-l,i) (t>m)) 6(i<n)f(t)

m
+ h(n,m,c,i) 6(i<n) f(t) 6 (t<m) }

I 4- I + I

{6(i-lin) (6(re=t)(F_ h(n,m,c-l,i-l)6(t>m))f(t)

m

+ h(n,m,c,i-l) f(t) 6 (t<m) }

call LOOP1 ( N,M,C,I

{ g(m,n,c,i) }

end If

{ h(n,m,c,i) 6 (i>n) + g(m,n,c,i) I
Note that all of the joint p.d.f. is caught in the loop

or recursive calls until I is incremented past N. The

recu. 'on which we must solve is:

h(n,m,c,i) - {6(i-l<n) (6(re=t) ' _ h(n,m,c-l,i-l)6(t>m))f(t)

m

+ h(n,m,c,i-l) f(t) 6 (t<m) )

T is a local variable to LOOP1 and not sent outside that
subroutine so we must "kill" it.

h(n,m,c,i) = {6(i-l<n)(6(re=t)(F h(n,m,c-l,i-1)6(t>m))f(t)

t m
+ h(n,m,c,i-l) f(t) 6 (t<m) ) I

- At first glance, this recursion doesn't look very useful.

To get a handle on what is going on, we will follow the

first few iterations of the program. In dvir~g so we will

drop the termination delta function. The initial call is

made with

h(n,m,c,i = 6 (c=O)-f(m)'6 (i-2)

4-52.

-- , i i - I l i tI



Applying the rules we find that

h(n,m,c-l,i-1) = 6(c=)f(m)-6(i=3)

and

h(n,m,c,i-l) = S(c=o)-f(m)-6 (i=3)

-so we have

h(n,m,c,i) =

6 (i=3) t{6(c=l)'6(m=t)'(Tm f (m)*6 (t>m))'f(t)

+ 6 (c=o)'f(m'f(t)I6(t<m) )

h(n,m,c,i) = 6(i=3) t { 6 (c= l ) 6 (m=t > (F(t ) ) ' f(t)

+ 6 (c=O)'f(m).f(t). 6(t<m) }

h(n,m,c,i) = 6(i=3) ( 6 (cl)'F(m)'f(m) + 6 (c=O)'f(m)'F(m) }

We can rewrite this into an equivalent form

h(nm,c,i) = 6(i=3) { 2"F(m)'f(m) (6(c ) + 6c0) ) }2 c) 2'

If we crank through another iteration we get:

h(n,m,c,i) -

6(i=4) 3 "2(m) f(m)'(I6(c-2) + 16 (c=1) + 16(c0)

The third time around we get:

h(n,m,c,i) =

6 (Lu5)(4F 3 (m)f(m)( 1 (cu3)4-!6(c=2)+!!6 (c=1)+!6(c-o)

Each time that we cycle through the equations we find that

the joint p.d.f. is a product of the marginal p.d.f.s of the

individual variables. We have factored the coefficients to

normalize the marginal p,d,f.s with respect to m and c.

When the joint p.d.f. of a set of random variables can be

written as the product of their respective marginal p.d.f.s,
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then the variables are said to be stochastically indepen-

dent. This is a very important thing for us to confirm in

this case. It tells us that we have not affected the

distribution of the maximum value by instrumenting the

program. The stochastic independence also simplifies the

solution of the recurrence relations. Because of it we can

set up a recursion for each variable separately by following

the marginal p.d.f. for each variable. We change the

induction variable from i to j = i - 1 so that the formulas

will look more familiar.
fM(m)j = F(m) f (m)j_l

and

f =c) f1 C1 + f (c)
fc) = fi c-) 1  j-1

The recursion for fM(m) gives the final distribution of

fM(m) = n'F n - (m)f(m)

which is the answer given by Hogg (12]. The recursion for

fc(c) is the same as Knuth's (6] and Ramshaw's [5].
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CHAPTER 5

APPLICATION TO SORTING AND SEARCHING

We now turn our attention to the further application of

our approach to sorting and searching algorithms. We will

look at three such algorithms: The "oblivious" Insertion

(Bubble) Sort, the "improved" Insertion Sort, and Binary

Search.

"Oblivious" Insertion Sort

Insertion Sort was used by Wegbreit (2] as the example

for verifying program performance. He used the *improved"

version which has an exit in the inner loop after each

candidate element is properly positioned. The "oblivious"

version of this program does not have this exit. It con-

tinues to compare the element being inserted to all of the

elements in the sorted sublist. While it is an inefficient

software algorithm, this version of the algorithm is of

interest because it can be realized using a network of Com-

parators (i.e. using hardware logic circuits).
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1 procedure INSERTION SORT ( B , N

2 real B(I:N)

3 OUTER:

for J 4- 1 to N-I do

4 INNER:

for I 4- J to I by -1 do

5 if B(I) > B(I+l) then

6 EXCHANGE ( B(I), B(I+l)

7 endif

8 repeat

9 repeat

10 end INSERTION SORT

The first step is to convert the loops to recursive

subroutine calls. We will number the statements so that

they may be related back to the original program. We will

also insert a counter variable, Y, to keep track of the

number of times an EXCHANGE takes place.

1 procedure INSERTION SORT ( B , N

2 real B(I:N)

global integer Y

3a J 4- 1; Y 4- 0

3b call OUTER( J, N-l, B

10 end INSERTION SORT.

3c procedure OUTER( J, LIM, B )
3d if LIM - J > 0 then

4a 1 4- J

4b call INNER( I, B

9a J 4- J + 1

9b call OUTER( J, LIM, B

9c endif
9d end OUTER
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4c procedure INNER( I, B

4d if I > I then

5 if B(I) > B(I+1) then

6 EXCHANGE ( B(I), B(I+l)

6a Y4-Y+1

7 endif

8a I _- I - I

8b call INNER ( I, B)

8c endif

8d end INNER

Appendix A contains a detailed, line-by-line tracing of

the joint p.d.f. which is used in an "average case"

analysis. From it we can develop the form which the distri-

bution of a "sorted" list takes. Specifically, we have:

6 (bNabN-l)'''6(b2 bl)'f'lbl,b 2 , ",bN),

where f'(bl,b 2 ,...,bN) is some transformation of the initial

joint p.d.f. The leading product of Anderson deltas con-

tains the information that the list is sorted. This may

seem like a simple thing, but remember that having started

with an algorithm and the assertion that it "sorts a list",

we have arrived at a form of joint p.d.f. which means "the

list is sorted". If we were to give an automatic analyzer

an algorithm, and if it came up with a final joint p.d.f.

that had this form, the automatic analyzer could say, "this

algorithm sorts a list." Conversely, if the analysis does

not result in a joint p.d.f. of this form then the analyzer

can say, Othis algorithm does not sort a list."

When analyzing sorting algorithms, three different
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types of input distributions are usually used. These

represent the initally sorted list, the initially reverse

sorted list, and the initially "random" list. These three

sometimes cover the best, worst, and average case execution

times, although not necessarily in that order. In some more

exotic algorithms, there is a more complicated input distri-

bution which leads to the best or worst case behavior. Our

approach can be used to determine the best and worst case

distributions, although we will not dwell on this. The best

case performance for Insertion Sort comes when the EXCHANGE

never takes place, and the worst case performance comes when

the exchange always takes place.

The work shown in Appendix A, for the average case

analysis, suggests the induction hypothesis that if you give

INNER, at its call from OUTER, the distribution

6 (i=j) 6(j<n) "6 (j=k)"
k!'6(b k.bk-l)'''.6(b 2.b l ) ' f ( b l ) ' f ( b 2 ) ' ' '. f ( b N ) ,

INNER returns the distribution

6(i=o) "6 (j<n) 6 (j=k)"

(k+l)i'6(b k , b k)'''-6(b 2.b l ) ' f ( b l1) ' f ( b 2 ) *' ' f ( b N ) .th

In other words, INNER inserts the k+l element into the

sorted list of the first k elements. We are therefore

justified in picking as the general form for a joint p.d.f.

going into INNER
6 (i=m) "6 (ir j) "6 (j<n)"

6 (bjabj_1 ) . ."6 (b 2 b I )"f'(y,b ,b 2,.... b ,...,,bN).
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Rather than doing that, let us start with a completely

general joint p.d.f. g(j,i,n,y,b1Ib 2 1...lb N) after 4c.

After 4d, in the true branch:

6 i>l) gj ,~n ,y,bl1b2 1.# N)

Sent to 8c, is the false branch:J

After 5, in the true branch:

Sent to 7, in the false branch is:

After-6( 6, bi)g~~~~~lb .bN

After 6,

After 7a,

6(i~i)-6(+ i+ b g(j,i,n,yl,bl1 b 2 .. b1 1b.i, ,b~ N)

After 7,6ual
6 ~ 2 b p

6il6bib-( g(j,i,n,y-l,b..,, 1  ,bi+ .,bip) N

+ g(j,i,n,y,b,..,bi+21  ,,bi b,, 1 ,) N)

We have arrived at the recursive calling of INNER, so

we must have:

g(jpi,n,y,beb 2 0 ... .b N)=

6(i+il)l-6 (b +22b-+ ~

g (j 1+1,n,y-l ,b1 ,b 2 1 , ,bi +2 ,bi 1,,.#.,b N)

+ g (j, l+l,n,y,b,,b 2,. ,b 1~1,bi+, . .,b N)
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From the other parts of the algorithm, we get the

boundary conditions

6(j<N)'6(i-j)
and the initial condition

g(j,i,n,y,b,b 2, . bN)

6 (i=j)" 6 (n=N)"h(y)" 6 (bjlbj_I ) "'' 6 (b 2 bl)"f(blb 2 ... , bN) ,

assuming that f is symmetric with respect to interchange of

variables.

Note that this is a "backward" recursion, i.e. we start

with i=j and move backward to the desired answer for i=O.

Once we have solved the recursive relationship for INNER

(based on i), we can use that to solve the recursive rela-

tion for OUTER (based on j), which gives the final answer

for the joint p.d.f. Doing this in the general case cannot

result in a closed form answer in the usual sense. It is

possible to "write down" the general solution for any given

N, but the equation would be equivalent to the one that we

would get if we were to "unwind" the loops into straight

line code. In order to get really useful results, we need

to select the form of the joint p.d.f. for the unsorted

list.

Once one has selected an initial joint p.d.f., and

solved the recursion relations, one has a joint p.d.f. which

represents the distributions of the variables at the termin-

ation of the algorithm. The distribution of the counter

variable is then isolated by summation (integration) over
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all the other variables. This marginal p.d.f. Is then used

to find the expected value, variance, and other statistics

in the usual manner.

"Improved" Insertion Sort

The relative performance of the "oblivious" insertion

sort can be improved, by noting that the portion of the

joint p.d.f. that fails the test at statement 5, is already

in sorted order. We can exit from the INNER loop at this

point without affecting the algorithm's ability to sort.

Such "obvious" improvements often have hidden side effects,

but our method will let us prove that the modified algorithm

still sorts. It also turns out that the distribution of I

will give a direct indication of the algorithm's

performance. For this reason, we will delete the counter

variable Y.

1 procedure INSERTION SORT ( B , N )

2 real B(i:N)

3 OUTER:

for J 4- 1 to N-i do

4 INNER:
for 1 4- J to 1 by -i do

5 if B(I) > B(I+I) then

6 EXCHANGE ( B(I), B(I+1)

6a else exit /* This is the change *1

7 endif

8 repeat

9 repeat

10 end INSERTION SORT
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The recursive equivalent is:

1 procedure INSERTION SORT ( B , N

2 real B(l:N)

3a J 4- 1

3b call OUTER( J, N-1, B

10 end INSERTION SORT

3c procedure OUTER( J, LIM, B )

3d if LIM - J > 0 then

4a I J

4b call INNER( I, B )
9a J4-J+l

9b call OUTER( J, LIM, B
9c endif

9d end OUTER

4c procedure INNER( I, B

4d if I > 1 then

5 if B(I) > B(I+l) then

6 EXCHANGE (B(I), B(I+I)

6a else return

7 endif

Ba 1 4- I - I

8b call INNER ( I, B
8c endif

8d end INNER

The return in the recursive program is equivalent to

the exit in the loop version. Everything works the same as

before up to statement 6a. At this point, the joint p.d.f.

from the false branch "escapes" from INNER. We will pick up

the analysis at that point on the J=l iteration.

5 This is the first test involving the data itself. This

statement splits the joint p.d.f. on the basis of the

values of B(I) and B(I+I).

4-62



In the true branch:

6(i>i) 6(=j) 6 (j<n) "6(j=l) "6 (b1 >b2 )"

f(b1 )'f(b 2 )''' fbN)

In the false branch:

6 (i>l)"6 (i=j) 6(j<n)"6(j= )"6(b 2 bl )"

f(b I)'f(b 2) .. f(bN)

6 This EXCHANGEs the values of b2 and bI

6(i>l)'6(i=j)' 6 (j<n)'6(j=l)'6 (b2>b1 )"

f(b2 )*f(bI)'''f(bN)

6a This sends the false branch joint p.d.f. back to OUTER.
6(il) "6(i=j) 6 (j<n) 6(j=l) 6 (b2 bl)

f(b1 )'f(b 2 ) .. f(bN)

It is accumulated there as we shall see.

7 At the join for the if statement we have only the true

branch left

6 (i>l)"6 (i=j)" 6 (j<n)" 6 (j=l)"6 (b2 >b)

f(b1 )*f(b 2 ) .. f(bN)

8a This adjusts I for the next iteration
6(i+iZ1)"6 (i- lj)"6 (j<n)"6 (j~l)"6 (b2>b )

"f(bl)'f(b 2)'''f(b N)

8b We know from step 4d above, that this joint p.d.f. will

be returned with the additional (superfluous)

restriction 6(i<l). Simplifying we have I'
6(i-o) 6 (j<n)'6(j=l) 6 (b 2 >bI) "f(b 1 ) "f(b 2) ""f(bN)

This joint p.d.f. is returned at 4b. It joins with

joint p.d.f. that "escaped*.
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The result is:

{6 (i=l)+6(i=o) }6(j<n) *6(j=l) 6 (b2>bl) "f(b ) "f(b 2 ) "f(bN)

9a This statement adjusts J for the next iteration, and

{5 (i=ll+6 (i=0))} 6 (j-l<n)"6 (j-l=l)-"6(b 2.bl)

"f(b1 )'f(b 2 )*''f(bN)

is again passed to OUTER.

3d We see now that this test "traps" all of the joint

p.d.f. in the loop until J exceeds LIM ( N-1 in our

case ). So we won't mention the false branch until the

end. In the true branch:

[6(i=l)+6(i=o)"6(j<n)"6 (j=2)"6 (b 2b l )"

f(bI)*f(b 2 )***f(bN)

4a This collapses the old joint p.d.f. on i and results in

6 (i=j)" 6 (j<n)"6 (j=2)"2"6 (b2>b I )"f(bl)
° f(b 2 )" f(bN)

In the oblivious version, this was a trivial operation.

Here it destroys information about the distribution of

the I in the last iteration.

4d This joint p.d.f. arrives at INNER, where this

statement controls the exit of the last of the joint

p.d.f.

5 In the true branch:

6(i=j) 6 (j<n) 6(j=2) 2"6(b 2 bl) "6 (b 2 >b 3 )"

f(b I ) I f(b 2 ) "". f(bN)

In the false branch:

6 (ij)" 6 (j<n)" 6 (j-2)"2" 6 (b 2 bI )-"(b 3 b2 ) "

f (b 1 ) •f(b22 )  - 1 f(b N )
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6 The exchange yields:

6(i=j)•6(j<n)•6(j=2)"2•6 (b 3bz)•6( b3 >b2 ) "

f(bI) •f(b 2 ) •••f(bN)

6a Here the false branch again escapes in the form of

6(i=2)' 6 (j<n)' 6 (j=2)'2"6(b2>b • 6(b 3 >b 2 )"

f(bI) "f(b2 ) ... f(bN)

7 At the join we have only the true branch joint p.d.f.

left:

6 (i=9)" 6 (j<n)" 6 (j=2)"2" 6 (b 3>b I )"6(b3>b2)"

f(bI) "f(b2) "' f(bN)

8a Prepares for the next call of INNER

6(i=j-l) 6 (j<n) "6(j=2) 2"6 (b3>b 1 ) "6(b 3>b2 )"

f(b I ) " f(b 2) •.f(bN)

This gets through to statement 5 in INNER.

5 In the true branch (multiply by 6 (bI>b2) and simplify):

6(i=j-l) 6 (j<n) 6(j=2) "

2-[6(b >b 2 )•
6 (b3 >b 1 ) "ib(b3>b 2 ) )

-f(b) "f(b2 ) . f(bN)
In the false branch (multiply by 6 (b >b,), simplify):

2-

6(i=j-l)' 6 (j<n) 6(j=2)

"2"{ 6 (b 3 >b2 ) -6( 2 >b 1 I

"f(b1) "f(b2) '**f(bN)

6 The EXCHANGE in the true branch yields:

6(i=j-l) 6 (j<n) -6(j=2) "

2"{6(b-3_b 2 "6(b2 >b)}"f(b)"f(b2) "'"f(bN)
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6a Again the false branch joint p.d.f. escapes

6(i=l)-6 (j<n) -6(j=2)

•2"( 6(b 3>b 2 ) "6 (b 2>bl)

"f(bI) "f(b2 ) .". f(bN)

7 At the join we have only the true branch joint p.d.f.

left:
6(i=j- ) "6 (j<n) 6(j=2)"

2" 6 (b 3ab 2 ) "6(b 2>b,)}"f(b1 )•f(b 2) ... f(bN)

8a Sets I to zero in this case, and the next call of INNER

returns this joint p.d.f.

6(i=o)' 6 (j<n)'6(j=2)-

2" 6 (b 3 _>b2 ) "6 (b 2>bl)}"f(bl)•f(b2) ... f(bN)

to OUTER at statement 9a.

4b The three sets of joint p.d.f.s meet and are added

here. We have:

f6 (i=o)+6 (i=l)+6(i=2)} 6(j<n) 6(j=2)"
2"{ 6 (b3_b 2 ) '

6(b 2>b I )P}f(bl) ' f(b 2 ) '.. f(bN)

9a Increments J and we get, going back into OUTER at 9b:
{6(i=0)+6(i~i)+6(i=2) }'6(j<n+l)'6(j=3)"

2"{ 6 (b 3>b2 ) 6(b 2 >bl)}"f(bl) "f(b 2 ) " "f(bN)

By now the pattern is clear. It is even easier to show

that the result at the end will be:

{6 (i-o)+6 (i=l) +.... +6(i=N-l) 6 (j=N)"

(N-)I{ 6 (bN>bN 1) .. ""6 (b 2 _>bl)} f(bl)"f(b 2 ) "f(bN )

If we collapse this on i, then we get the same result as

before. Therefore, the change in the program has not
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changed its ability to sort. This form tells us some other

things. Specifically, the value of I that is returned by

INNER represents the number of elements that were found to

be smaller than the J+l t h element. It is easy to see that I

can take on exactly J+l values from 0 to J, and that each of

those values is equally likely. This is something that one

would have expected, but we have proved it without recourse

to any elaborate combinatorial or probabilistic argumenLt.

The result just "fell out" of the analysis. It is easier to

write a program that can recognize that the probability

density function of a discrete variable has the same value

at each point, than to have that program say "Each I is

equally likely!"

The other thing that the values and p.d.f. for I tells

us is the number of exchanges that take place. From the1
observation above, we get that P(i=j) = 3 so that the

expected number of exchanges for any value of i is

10j+l 2
i=i

for the entire N elements, this is

L -1 (N 2-N)

which is the correct answer. This turns out to be the

expected number of comparisons, also. We can see that the

running time performance of the sort has been improved by a

factor of two.
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Binary Search

We now turn our attention to the analysis of an

algorithm for a Binary Search. This particular version

closely follows one given by Horowitz and Sahni (9]. We

introduce it here for two reasons: (1) it gives us a chance

to present the case statement, and (2) it is the first

"divide and conquer" algorithm that we have considered. The

function INT returns the INTeger part of the argument (i.e.

the floor function).

1 procedure BINARY SEARCH ( N, I, X
global real K(l:N)

2 LOW 4- 1; UP 4- N
3 14-0
4 SPLIT:while LOW < UP do
5 MID 4- INT ( (LOW + UP) /2)
6 case
7 : X > K(MID) : LOW 4- MID + 1
8 : X = K(MID) : I 4- MID; return
9 : X < K(MID) : UP 4- MID -I

10 end
11 end
12 end BINARYSEARCH

The recursive equivalent is:

I procedure BINARY SEARCH ( N, I, X
global real K(I:N)

2 LOW 4- 1; UP 4- N
3 1 4- 0
4a call SPLIT ( LOW, UP, X, I )
12 end BINARY SEARCH
4b procedure SPLIT( LOW, UP, X, I )
4c if LOW < UP then
5 MI 4- INT ( (LOW + UP) /2)
6 case
7 : X > K(MID) : LOW 4- MID + 1
8 : X = K(MID) : I 4- MID; return
9 : X < K(MID) : UP 4- MID - 1
10 end
Ila call SPLIT ( LOW, UP, X, I
lib endif
lic re~urn

- - lid end SPLIT
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Since it is very straight forward, we will just sketch

the analysis. We start with the array K(l:N) ordered, so we

have the initial joint p.d.f.
6(kI<k 2) "6(k2<k3) " '6(k n l<k f(kI) f(k2) " f(kn)

The search key X is drawn from a p.d.f. g(x), and the

assignment statements 2 and 3 have their usual effect. As a

result we have SPLIT called with the joint p.d.f.

6 (low=l) 6 (up=N) 6(i=o) g(x)"
6 (kI<k 2 )" 6 (k 2 <k 3 ) ".6(kn- 1 <kn)"f(kl)"f(k2) ... f(kn)

After 4c

6 (low<up) 6 (low=l) 6 (up=N) 6(i=o) g(x)"

6 (kl<k 2 )-6 (k 2 <k 3 )**'6(kn-l<kn)"f(k1 )"f(k 2 )***f(kn)

After 5 6 (mid=I(l+N)/21) 6 (low<up)"

6 (low=l) "6 (up=N) 6(i=o) g(x)"
6 (kl<k 2) "6 (k 2 <k 3 ) .'6(kn -l<kn) "f(kl)"f(k2) ".f(kn)

At 6 the joint p.d.f. splits into three parts with the arms

of the case statement. The middle leg allows a portion of

the joint p.d.f. to escape back to the calling program.

After 7
6 (X>kmid) 6 (mld=1 (1+N)/21)

6 (low=mid+l) "6 (up=N) 6(i=O) "g(x)"

6(k1 < k 2 )  6(k 2 <k 3 ) "'. 6 (kn- l < k n ) "f(k1) "f(k2) "'.f(kn)

After 8

6 (x=kmid)" 6 (mid=1 ( 1 +N)/21)"6(low=l)"6(up=N)"6(i=mid)"g(x)*

6 (k 1<k 2 )-6 (k 2 <k 3 )'''6 (kn-l<kn ) ' f(kI ) ' f(k 2 ) ' ' ' f(k n )
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After 9

6 (X<kmid) 6 (mid=J(+N)/21)"

6 (low=l) 6 (up=mid-l) 6(i=o) g(x)"

6 (k 2 2<k "6(k2<k 3) --"6(k nl<kn ) "f(kI )"f(k 2 ) " "f (k )

The sum of the joint p.d.f. after 7 and after 9 is

presented to the next call on SPLIT. Each time SPLIT is

called, some of the joint p.d.f. escapes and is returned,

until the final return for no find. It is relatively easy

to see that the final joint p.d.f. will be

6(i=O) ( 6(x<k 1) + 6(x>k 1 )6 (x<k 2 ) + ..... 6+(x>kn) ) +

7 n_  ( 6 (i-mid) 6 (X=kmid))
mid=l

gx)"6(kI<k 2)-6 k2<k3 ) "" "6 (kn-1 <kn)"f(k I )*f(k 2) """f(k s)

The behavior of this joint p.d.f. is dependent on the form

of g(x). If this p.d.f. restricts the value of x to those

of the K(M) with equal probability, then we see that any of

the values is equally likely. The behavior of the number of

comparisons can be derived by instrumenting the algorithm.

Doing so results in the usual log n behavior.
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CHAPTER 6

APPLICATION TO A MISCELLANEOUS PROBLEM

We will now look at Jonassen's and Knuth's celebrated

"Trivial Algorithm Whose Analysis Isn't" (8]. Ramshaw, a

student of Knuth's, applies his Frequentistic System to this

algorithm in his thesis (5]. Jonassen and Knuth did not

give the derivation of the initial recursion relationships,

but derived them "by reasoning almost directly from the code

of the program" [5]. We now believe that our work has

formalized this "reasoning almost directly from the code",

because, when applied to this algorithm, it proceeds

directly to their equations 2.1, 2.2, and 2.3 [8].

Basically the algorithm involves the Insertion and

deletion of keys in a binary tree structure. The insertion

is done with the standard binary insertion algorithm and the

deletion is done using Hibbard's algorithm[18]. The two

possible trees with two keys are called F and G. The five

possible binary trees with three keys are called A, B, C, D,

and E. With x < y < z, we have the following pictures for

these binary trees:
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A(x,y,z) B(x,y,z) C(x,y,z) D(x,y,z) E(x,y,z)

z z y x x

y x x z z y
/ \/\

x y y z

F(x,y) G(x,y)

y x
/\

x y

The insertion algorithm is the standard one for binary

insertion, the new element is appended to the tree in the

appropriate place. Hibbard's deletion algorithm proceeds in

a straight-forward manner except that the deletion of x. from

D(x,y,z) results in G(y,z) instead of F(y,z), as one might

expect. The insertion and deletion algorithm is given in

detail in the program which follows. We will not go further

into the background of the algorithm. Anyone interested

should see the Jonassen and Knuth article [8], which does

that quite nicely.

While the others [5.,8] have always assumed that the

keys are selected from a uniform distribution, it turns out

that this restriction is unnecessary in our approach. It is

only necessary to have the keys drawn from the same,

stationary distribution f(x).

Jonassen and Knuth [8] give the graphical and word

procedure representation of the algorithm, we will only

present the algorithm as a SPARKS program. We will use

Ramshaw's [5] notation for the tuples representing the
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condition of the tree. Furthermore, we will adopt the

convention that after assignment the "from" variables are

set to zero ( "killed" ). This is not really necessary, but

it does simplify the notation, since after the variables are

"killed" we no longer have to carry tem in the joint p.d.f.

equations.

I procedure TRIVIAL ( N

/* Load the initial tree */

2 X 4- randomf; Y 4- randomf

3 if ( X < Y ) then

4 <S;V,W> 4- <G;X,Y>

5 else

6 <S;V,W> 4- <F;Y,X>

7 endif

/* Thp main algorithm loop */

8 for K 4- 1 to N

/* Insert a key */

9 R 4- randomf

10 case

11 : S = F and R < V : <T;X,Y,Z> 4- <A;R,V,W>

12 : S = F and V < R < W : <T;X,Y,Z> 4- <B;V,R,W>

13 : S = F and W < R : <T;X,Y,Z> 4- <C;V,W,R>

14 : S = G and R < V : <T;X,Y,Z> 4- <C;R,V,W>

15 : S = G and V < R < W : <T;X,Y,Z> 4- <D;V,R,W>

16 : S = G and W < R : <T;X,Y,Z> 4- <E;V,WR>

17 end

/* Now do the deletion */

18 L 4- randomxyz

19 case

20 : T = A and L - X <S;V,W> 4- <F;Y,Z>

21 : T = A and L - Y <S;V,W> 4- <F;X,Z>

22 : T = A and L - Z <S;V,W> 4- <F;X,Y>

23 : T = B and L - X : <S;V,W> 4-'<F;Y,Z>
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24 T B and L Y <S;VW> 4- <F;XZ>
25 : T = B and L = Z <S;VW> 4- <G;XY>

26 T = C and L = X <S;VW> 4- <G;YZ>

27 T C and L'= Y <S;VW> 4- <F;XZ>

28 T C and L Z <S;VW> 4- <F;XY>
29 : : - D and L X <S;VW> 4- <G;YZ>

30 : T - D and L = Y <S;VW> 4- <G;XZ>
31 : T = D and L = Z : <S;V.W> 4- <G;X.Y>

32 : T - E and L =-X : <S;VW> 4- <G;YZ>
33 T - E and L = Y <S;VW> 4- <G;XZ>

34 T - E and L = Z : <S;VW> 4- <G;XY>

35 end

36 repeat

37 end TRIVIAL

The recursive version of this program is then,

1 procedure TRIVIAL ( N )
/* Load the initial tree */

2 X 4- randomf; Y 4- randomf
3 if ( X < Y ) then

4 <S;VW> 4- <G;XY>

5 else

6 <S;V,W> 4- <F;Y,X>

7 endif
/* The main algorithm loop */

8a K 4- I
8b call MAIN (K , N)

37 end TRIVIAL

8c procedure MAIN ( K, N

8d if ( K < N ) then
/* Insert a key */

9 R 4- randomf
10 case

11 S = F and R < V : <T;X,Y,Z> 4- <A;R,V,W>

12 S - F and V < R < W <T;X,Y,Z> 4- <B;V,R,W>
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13 : S = F and W < R : <T;X,Y,Z> 4- <C;V,W,R>

14 : S G and R < V <T;X,Y,Z> 4- <C;R,V,W>

15 : S G and V < R < W : <T;X,Y,Z> 4- <D;V,R,W>

16 : S G and W < R : <T;X,Y,Z> 4- <E;V,W,R>

17 end

/* Now do the deletion */

18 L 4- random xyZ

19 case

20 : T = A and L = X : <S;V,W> 4- <F;Y,Z>

21 : T = A and L = Y <S;V,W> 4- <F;X,Z>

22 : T A and L = Z <S;V,W> 4- <F;X,Y>

23 T B and L = X <S;V,W> 4- <F;Y,Z>

24 T B and L = Y : <S;V,W> 4- <F;X,Z>

25 : T = B and L = Z <S;V,W> 4- <G;X,Y>

26 T C and L = X <S;V,W> 4- <G;Y,Z>

27 T C and L = Y : <S;V,W> 4- <F;X,Z>

28 T C and L Z <S;V,W> 4- <F;X,Y>

29 : T = D and L = X : <S;V,W> 4- <G;Y,Z>

30 : T D and L = Y : <S;V,W> 4- <G;X,Z>

31 : T = D and L = Z : <S;V,W> 4- <G;X,Y>

32 : T E and L = X : <S;V,W> 4- <G;Y,Z>

33 : T = E and L = Y : <S;V,W> 4- <G;X,Z>

34 : T E and L = Z : <S;V,W> 4- <G;X,Y>

35 end

36a K = K + 1

36b call MAIN ( K, N )

36c endif

36d end MAIN

The analysis is as follows:

After 2
f(x) f(y)

After 3 6(x<y)"f(x)"f(Y)
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After 4 6 (s=G)"6(v<w)"f(v)"f(w)

After 5 6 (x>y) f(x) f(y)

After 6 6 (s=F) "6 (v<w) "f (v) "f (w)

After 7 {6(s=F) + 6 (s=G)u 6 (v<w: f(v)f(w)

After 8a

6(k=l) "6(s=F) + 6(s=G)}'6(v<w)"f(v)"f(w)

Which is what we expected, either tree is equally

likely, and the joint p.d.f. is that of a sorted list of two

variables. Rather than continue to follow an explicit

example through the algorithm, as we have done in the past,

we will define unknown functions to represent the various

tree forms. Following these through the algorithm will

result in the recursive equations. Let:

6 (k=K) 6 (v<w) "{6 (s=F) fk(v,w)+6 (s=G) gk(vw) )

represent the joint p.d.f. that is presented to each call of

the recursive subroutine MAIN. This form comes from looking

ahead and recognizing that no joint p.d.f. "leaks out" until

the end of the loop.

After 8d

6(k<N)6(k=K) 6 (v<w) {6 (s=F)'fk(v,w)+ 6 (s=G)'gk(vw)}

After 9

6 (k<N) 6 (k=K) 6 (v<w) {6 (s=F) fk(v,w)+6 (s=G) gk (v,w)} f(r)

In order to simplify the expressions, we will drop the

loop-counting-and-stopping factor 6(k<N)" 6 (k=K). We will
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also note that 6 (s=F) 6 (s=G) = 0, and use this in each arm

of the case statement.

After 11 6 (s=F) fk(vw) f(r) "6 (v<w) *6 (r<v)

6(t=A) 6(x=r) 6(y=v)' 6(z=w)
using the convention of "killing" the old variables,

6 (t=A)'fk(yz)"f(x)' 6 (x<y<z)

Note that this convention simplifies the assignments to

<t;x,y,z> because the distributions of these variables is

always 6 (s=0)' 6 (v=o)' 6(w=0) at this point.

After 12 6 (t=B)fk(xz)'f(y) 6 (x<y<z)

After 13 6(t=c) fk(xy) f(z) 6 (x<y<z)

After 14 6(t=C)'gk ( y ' z ) ' f l x ) ' 6 l x <y < z )

After 14After 15 6 t=D) .gk(xz) .f (y) . 6 (x<y<z)

6 (t=D).gk(xlz)*f(yW* 6 (x<Y~z)

After 16 6(t=E) gk(xly) *f(z) 6 (x<y<z)

After 17

We have the sum of the six arms of the case statement.

It is at this point that, by looking ahead, we see that the

next general functions should be defined as:

ak (x,y,z)=fk (yz) f(x)

bk (x,y,z)=fk(xz) *f(y)

C k(xfyz) fk(x,y)gf(z) +gk(yz)f(x)

e k (x IyI Z) =gk (x'y) *"f (Y)ek(xvylz)mgk(xlz) *f(y)
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With f(x)= 6 (O<x<l) for a unitary distribution, these

are equations 2.1 in Jonassen and Knuth [8].

The whole joint p.d.f. after 17 is then:

{6 (t=A)-ak(x,y,z) + 6 (t=B)bk(x,y,z) + 6 (t=C)'ck(X,y,z)

+ 6 ,t=D)-dk(xlyz) + 6 (t=E)*ek(xyz) J 6 (x<y<z)

After 18

{16 (t=A)'ak(x,y,z) + 6 (t=B)-bk(X,y,z ) + 
6 (t=C)'ck(X,y,z)

+ 6 (t=D)'dk(x,y,z) + 6 (t=E)'ek(x,y,z) ) *

6 (x<y<z) 1 6 (l~x) + 16 (1-Y) + 16 (i=z)

where the last term expresses the fact that any of the

keys may be deleted with equal probability.

After 20

6 (t=A)"a (x,y,z) " 6(l-x) 6 (s=F) 6(v=y) 6(w=z) 6(x<y<z)

We now apply the convention of setting t,x,y, and z to

zero. This is done by "integration" over these variables

using Theorem 5. We will use our summation notation, which

is defined to work the same as integration if the functions

are taken to be continuous. Remember that if a variable of

integration appears in an Boolean delta function and is

equal to a free variable, then the effect is the same as a

change of variable. In this case y and z appear this way,

while x appears only with respect to other variables of

integration.

•6 (s=F)" 6 (vy) 6 (w}z)" 6 (x<y<z) -
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x

Do the same thing with the 14 other arms of the case

statement.

After 35

6 (v<w).E '6 (s=F).( [ (akxvw + bkxvw ).S(x<v)

+ Ky(ak(vlylw) + bk(vty#'w) + ck(vlytw) ).6(v<Y<w)

+ z(ak(v,w,z) + Ck(Vlwlz) ).6 (w~z)

+ 16 (S=G).{ (ck(x~v,w) + dk(X,v,w) + ek(x,v,w)). 6 (x<v)

+ __(dk(v,y,w) + ek(V,Y,W)). 6 (v<y<w)
y

+ ZI(bk(v,w,z) + dk(v,wz) + ekvWz)(w) I

After 36aI The value of k is incremented, and we can identi~y the

terms of the joint p.d.f. after 36a as equal to fk+l(vlw)

and (~1 v,w) respectively. We now have arrived at

Jonassen's and Knuth's recursive equations 2.2 [81.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

What have we accomplished? We have sketched the

foundation for a systematic approach to algorithm analysis

that is based on two ideas:

1. Convert all loop constructs within a program to

recursive subroutine calls

2. Develop a representation of the initial joint p.d.f.

of the program variables, and follow the effects

that the program has on that joint p.d.f.

These two ideas yield recurrence relations for the

joint p.d.f. which can be solved to get the joint p.d.f. at

any point in the execution of the algorithm. The branching

probabilities can be calculated directly from the joint

p.d.f. at each conditional statement. It is this detailing

of the branching probabilities that was missing from the

automatic analyzers METRIC and EL/PL. Therefore, the logical

next step would be to add this method to the existing

analyzers.

The central &ldition we have made to the understanding

of the behavior of joint p.d.f.s in a program is the intro-

duction of the Boolean delta function. This function, by
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connecting the boolean world of the algorithmic conditional

statement to the real numbers, makes 'it possible to keep

track of the effects of conditional statements on the joint

p.d.f.s. Its form, essentially a list of arguments, makes

it very easy to represent and operate upon in a computer

program, especially since LISP seems to be the language most

used in this type of work.

Our approach, by capturing the behavior of the program

variables in detail, also includes a means for verifying the

performance of algorithms. All of the information that can

be obtained from previous methods of program verification

seems to be present in our method.

Regardless of the underlying simplicity of the ideas,

the method is very tedious to apply to any significant

algorithm. The examples given in this thesis were made

possible by the string manipulation features of a DIGITAL

WS/78 Word P-ocessor. The next thing that must be done

before more useful work can be done in this area is to

automate the technique. This automated processor should be

an interactive one in the EL/PL style.

With an automatic processor, investigations can begin

into some of the simple program constructs which we have not

addressed. Multiplication, division, addition and subtrac-

tion of variables have not been considered. Since these are

very Important parts of many algorithms, this work must be

extended to cover them before it becomes really useful.
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APPENDIX A

LINE-BY-LINE ANALYSIS

of

"OBLIVIOUS" INSERTION SORT

We must do the analysis for a specific class of initial

distributions for the problem to be tractable. Specifical-

ly, we will assume that each element of B(I:N) is drawn

independently from a well defined, stationary p.d.f. f(bi).

Therefore the initial joint p.d.f. is simply

fB(bl,b 2 ,b3 . . . . . . ,bN) = f(b I ) f(b 2) f(bN).

The converted program is:

1 procedure INSERTION SORT ( B , N

2 real B(I:N)

3a J 4- I

3b call OUTER( J, N-1, B

10 end INSERTION SORT

3c procedure OUTER( J, LIM, B

3d if LIM - J > 0 then

4a I <- J

4b call INNER( I, B

9a J4-J+1

9b call OUTER( J, LIM, B

9c endif

9d end OUTER
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4c procedure INNER( I, B

4d If I > 1 then

5 if B(I) > B(I+l) then
6 EXCHANGE (B(I), B(I+I)

7 endif

8a 1 4- 1 - I

8b call INNER ( I, B)

8c endif

8d end INNER

The numbers will refer to the statement numbers of the

recursive version of the algorithm.

I Initial joint p.d.f.

fB(bl,b 2 1 b 3 . . . . . . bN) = f(b) f(b 2) f(bN).

3a Adds a new variable

6(j=l) - f(b ) 1 f(b 2 )  o f(b N).

3d Splits the distribution based on the values of J and

LIM.

In the true branch:

6 (j<n) - 6 (j=l) - f(b1 ) " f(b2) . . . f(bN).

In the false branch:

6 {j.n) - 6(j=l) " f(b1 ) o f(b2) o • f(bN'.

We have made the substitutions of the instances of the

dummy variables in the routine. Now, if N = i, then

the true branch is zero, the false branch reduces to

6(j=l) " f(bl), and we are done.

4a Adds a new variable in the true branch

6 (i-j) 6 (jn) 6 (jl) f(b 1 ) •f(b 2) •"f(bN).

This joint p.d.f. is transfered with the call at 4b.
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4d Splits the distribution based on the value of I.

In the true branch:

(i~l)"6 (i=j)"6 (j<n)"6 (j=l)"f (b1 ) "f (b 2 ) *"" f(b N ) .

In the false branch:

6(i<l) 6 (i=j) 6 (j<n) 6(j=l) "f(bl) *f(b2 ) *""f(bN).

5 Finally things get interesting! This is the first test

involving the data itself. This statement splits the

joint p.d.f. on the basis of the values of B(I) and

B(1+l).

In the true branch:

6(il) "6(i=j) "6 (j<n) "6(j=l) 6(b 1>b2) "f(b 1 ) "f(b 2) "" "f(bN).

In the false branch:

6(i>l) "6 (i=j) "6 (j<n) 6(j=l) *6 (b2>b I ) "f(b 1 ) "f(b 2 ) "" "f(bN).

6 This EXCHANGEs the values of b2 and b1
6 (i>l)"6 (i=j)"6 (j<n)"6 (j=l)"6 (b 2>b I ) "f(b 2 ) "f(b I1 ) ... "f(b N ) .

7 At the join for the if statement we have

6(i>l) "6(i=j) "6 (j<n) 6(j=l)"

O6 (b2 >bl)+
6 (b2 >bl) } 'f(bl) 'f(b2)'. 'f(bN).

It is now that we can see the significance of our

choice of initial joint p.d.f. which is symmetric with

respect to the exchange of variable indicies.

At this point we must decide whether the probability

that bi=b j is going to be significant, or not. If we choose

to deal with continuous distributions, then this probability

is zero. Likewise, if we say that the discrete elements arej distinct we have the same thing. We will do this so that we
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can write the joined joint p.d.f. as
6(i>l)'6(i=j)'6(j<n)'6(j=l)'2"6(b21 bl)"

f(b1 )'f(b2 ) .. f(bN)

8a This adjusts I for the next iteration

6(i+l>1)' 6 (i+l=j)'6(j<n) 6(j=l)"

2"6 (b2>bl) 'f(bl ) f(b2 )' ' f(bN)

8b We know from step 4d above, that this joint p.d.f. will

be returned with the additional (superfluous)

restriction 6(i<l). Simplifying we have

6(i=0)'6(j<n)' 6 (j=l)'2"6(b 2>b 1 ) "f(bl)"f(b 2 )'. .f(bN)

This joint p.d.f. is returned at 4b.

9a This statement adjusts J for the next iteration, and

6(i=o)"6(j-l<n)" 6 (j-l=l)"2"6 (b2 >b,) f(bl) f(b2) "f(bN)

is again passed to OUTER.

3d We see now that this test "traps" all of the joint

p.d.f. in the loop until J exceeds LIM ( N-1 in our

case ). So we won't mention the false branch until the

end.

In the true branch:

6 (j<n) 6(i=o) 6 (j-l<n) 6(j-l=l)"

2"6 (b2>b )'f(b I)'f(b 2 )'..f(bN)

4a This collapses the old joint p.d.f. on i and results in

6(i=j)"6(j<n)"6(j=2)"2" 6 (b 2->bI ) "f(b I ) "f(b 2 ) " "f(b N )  io

We have simplified the expression with respect to j.

4d This joint p.d.f. arrives at INNER, where this

statement traps the joint p~d.f. until I<l.
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5 In the true branch:

6(ij) *6(j<n)-6(j=2)*2'6 (b 2>b1 ) *6(b 2>b 3)

f(b I) f(b 2) ...f(b N)

In the false branch:

6c'j) 6 (jn) *6(j=2)*2-6 (b2 b 1 )-6(b 3 lb 2)*

f(blI)*f(b 2 )f(b N)

6 The exchange yields:

6(i=j)-6(j<n) *6(j=2)*2-6(b 3>bl) *6(b 3>b 2).
f(b 1 )f(b 2)***f(bN)

7 At the join we have:

.6(i=j) 6(j<n)*6(j=2)-

2 f6 (b 2 b)* 6 (b 3 >b 2) +
6 (b 3 b)(b 3 >b 2)P

f(b I) f(b 2 )**f(b N)

Ba Prepares for the next call of INNER

6cij-l) 6(j<n) 6(j=2)-

2' {6 (b 2 >bl)* 6 (b 3 .b 2) +6 (b 3 Ibl) 6 (b 3 >b 2))

This gets through to statement 5 in INNER.

5 In the true branch(multiply by 6(b 1>b 2)adsmlf)

6(i=j-l) 6(j<n) 6(j=2)'

Vif(b 1>b 2 )
6 (b 3 bl)*

6 (b 3 >b 2 ))f(b 1)-f(b 2 ) ..f(b N)

In the false branch(multiply by 6 (b 2.bl) and simplify):

6(ij-l -6(j<n) 6(j=2)'

2'(6 (b 21bl) 6 (bb 2 )-I6 (b 2 b) 6 (b b1)-
6 (b 3>b2 ))P

f(b I)-f(b 2 )"f(b N)

4-88,

VIPK



6(i=j-1) 6(j<n) 6(j=2)"

2" 2" 6 (b 3>b 2 ) - 6 (b 2>bl)}f(bl)"f(b 2 ) " "f(bN)

6 The EXCHANGE in the true branch yields:
6(i=j-1)-6(j<n) "6(j=2)"

2"16 (b2>bl)'6(b 3>b 2 )'
6 (b3 >bl)}'f(bl)'f(b2 )'.. f(bN)

6(i=j-l) 6 4j<n) 6(j=2)"

2"{ 6 (b3 _>b2 )6(b 2 >b I ) }'f(bl ) ' f(b 2 ) .' f(bN )

7 At the join we have:

6 (i=j-l) "6 (j<n) 6(j=2)"

2"13"6 (b3>b 2 ) "
6 (b2 _>bl)}"f(bl)"f(b 2) "" f(bN)

8a Sets I to zero in this case, and the next call of INNER

returns this joint p.d.f.

6(i=0)' 6 (j<n)'6(j=2) .

2"{3"6(b3>b 2 ) ' 6 ( b 2 - b I )P}f(bl) ' f(b 2 )'.f(bN)

to OUTER at statement 9a.

This suggests the induction hypothesis that if you give

INNER, at its call from OUTER, the distribution

6(i=j)' 6 (j<n)' 6 (j=k) "

kf 6 (bk>bk) "" 6 (b 2 _>bl),f(bl)"f(b 2 ) """ f(bN)

it returns the distribution

6(i=o) 6 (j<n)"6 (j=k)"

(k+l)i' 6 (bk+l>bk)''' 6 (b2>b l ) 'f(bl ) 'f(b2 ) .. f(bN)

This can be shown to be true in a straight-forward, if

somewhat tedious, manner.

OUTER's "loop-stopper" releases this joint p.d.f. when
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J=N and we have the result:

6(i=o 6 (j=N) N1 6 (bNjbN _l) .'6 (b 2 >b l )"

f(b1 )'f(b 2 ) .. f(bN)

This is precisely the proper answer which is usually derived

using combinatorial arguments (12]. It may be easier to

implement this method of analysis, even though it requires

an induction proof solver, than to automate the rules of

combinatorial arguments and proofs. It should also be noted

that at every step of the way we had a precise expression

for the performance of the program. The marginal p.d.f. for

any program variable gives the probability that the variable

will take on a particular value.

Once the analysis of the bare algorithm is complete, an

analysis for any particular aspect can be done by instru-

menting the algorithm. It is easy to show that this

algorithm requires exactly N2-) comparisons between the
2

elements, which is twice as many as the "improved" version

of the algorithm.
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ALGORITHMIC COMPLEXITY
Part 5

by

Philip J. Janus

ADAPTIVE METHODS FOR UNKNOWN DISTRIBUTIONS
IN DISTRIBUTIVE PARTITIONING SORTING

ABSTRACT

Distributive Partitioning Sorting (DPS) is a new,

innovative, practical method to sort a set of items on a

computer. This method has been shown to be biased toward

uniformly distributed data, performing poorly on skewed

distributions. The purpose of this work is to find adaptive

methods of DPS which will sort any unknown distribution equally

well and remain competitive with DPS.

Two adaptive methods were developed and thoroughly tested,

the Ranking Method and the Cumulative Distribution Functioni

(CDF) Method. These methods transform unknown distributions

into uniform distributions, and then perform the sorting.

After an implementation of DPS was benchmarked against

Qulcksort, experiments were-run on four distributions (Uniform,

Normal, Poisson, and Exponential) using four algorithms (two
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versions of OPS, Ranking, and COF). Statistics were taken to

measure the efficiencies and run times of the algorithms. The

results were analyzed against theoretical and intuitive

expectations so that conclusions could be reached regarding the

performance of the methods.

It was found that if it is known in advance that the data

distribution will typically be uniform, normal, or slightly

skewed, then it is advisable to use OPS. However, if it is

possible the data distribution might be very skewed, or

extremely large or small data values exist relative to the rest

of the data, then there is l ittle to lose and much to gain by

using the COF adaptive method. COFOPS contained only a 2% to

4% overhead to BPS in the uniform case, and ran up to 12%

better for 30,000 items than DPS on exponentially distributed

data. The ranking method was found to contain too much

overhead to be competitive with DPS. Suggestions to further

improve CDF are made, and future implications of this thesis

work are discussed.
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PREFACE

A large percentage of data processing applications is

spent sorting data. For that reason, it is not surprising that

sorting is the most widely studied problem in computer science.

The faster data can be sorted, the more computer time and money

can be saved.

The history of the sorting problem is long and interesting.

As expected in any field of study, once an algorithm has been

developed, somebody tries to find a better one. This is true

with a sorting method called Quicksort, developed in 1962.

Quicksort had been shown to perform fastest on most machines

once some modifications were made to it.

This was the case until 1978. In January of that year, a

Polish computer scientist named Wlodzimierz Dobosiewicz

published a paper in Information Processing Letters detailing a

sorting algorithm called Distributive Partitioning Sorting, or

OPS. This new sorting method was shown to perform much better

than Quicksort. Very soon afterward, debate began as to its

true practicality and significance.

And as could be expected, people started looking for ways

to improve it. This thesis conducts an in depth look at DPS,

and the various problems associated with it. The main focus of

this work is to improve the overall performance of the

algorithm. The author pleads guilty to first degree

improvement.I 5-tv
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CHAPTER I

DISCUSSION OF PRIOR WORK

1.1 Introducing DPS

In 1978, a new sorting method called Distributive

Partitioning Sorting, or OPS, was presented to the world. The

algorithm was published in the European periodical Information

Processing Letters by a Polish computer science student named

Wlodzimierz Dobosiewicz (pronounced Vod-jim'-yits Do-bo'-shev-its)

(0OBO78a]. The article detailed a fast, practical, O(n)

sorting algorithm that could outperform current "fastest"

methods. The results of the paper were so astounding that

Datamation proclaimed it "the first real innovation in (sorting)

in about 15 years!" [DATA78]. Experimental results on a CDC

computer found BPS to be 30 times faster for 5000 items than

its nearest competitor, Quicksort. It has also been shown that

this factor increases as the number of items increases. The

potential for saving computer time and money using DPS is great.

In Distributive Partitioning Sorting it can be shown that

if the data is uniformly distributed, the expected complexity

of the algorithm is O(n); that is, the expected running time of

the program is cn, where c is a constant that is multiplied by

n, the number of items to be sorted. The drawback with DPS is

that it is much slower in the worst case. Although DPS has an

O(n) expected case complexity, it is O(n log n) in the worst

5-1
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case. OPS approaches the worst case as the data distribution

becomes more and more skewed, such as with a series of

factorials. The purpose of this work is to show that the

performance of DPS can be improved for unknown distributions.

The algorithm would then be guaranteed to outperform its

competitors for any input distribution.

1.2 Definition of Sorting

First it is necessary to define sorting, and the

limitations involved with it. Sorting, as the word implies, is

the arranging of a set of data into some prescribed order. In

his famous book, Searching and Sorting [KNUT73], Knuth

rigorously defines sorting in the following manner:

Suppose n items are given

R1, R2, ... , Rn

called records, to be sorted in either ascending or descending

order. The records collectively are called a file. Each

record, R., has a piece of information called a key field,

K., on which the record is to be sorted.

A linear ordering is defined on the keys with two

relational laws. Given three keys a, b, and c:

i) Law of Trichotomy --

One of either

a < b a =b a >b

must be true.
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ii) Law of Transitivity -

If a < band b < c

then a < c.

Governed by this linear ordering, the goal of sorting is to

rearrange the keys into a permutation

such that

Kp(1) i Kp()<. < Kp
(2p(n)

The analysis of the various sorting algorithms in t h is

paper will be concerned with a number of criteria on which a

method's performance may be judged. An algorithm should be

shown to work correctly for all types of expected inputs. The

amount of work done and the amount of storage used should also

be considered. Equally important is whether the resulting

program is simple and lends itself to being easily understood,

modified, and debugged. Lastly it should be seen if the method

is optimal; that is, if another method exists which does less

work or uses less space.

For example, consider the optimality of the sorting

problem. We would like to know how many comparisons are

necessary to sort a set of n items in a comparison-based

sorting method. This means establishing a lower bound for such

methods. For any comparison method, a comparison tree can be

constructed.

Figure 1.1 shows a comparison tree for three items. Each

internal node represents a comparison and the lowest level
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Figure 1.1

Comparison Tree

Given keys: 1:2

A,, A 2 A 3 v

2:3 2:2:3

1:2:3> 1: 1: 3:2:1

1:3:2 3:1:2 2:1:3 2:3:1

I
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nodes (leaves) show the possible outcomes. Note that if we are

given n items to sort, there are n factorial (nt) possible

outcomes. Hence 3!, or 6, leaves are in the example tree.

Also note that in any binary tree of height k levels,

there are at most ? leaves. In comparison trees, the leaves

are the possible outcomes of the sort. So:

2k > n' (1)

Let C(n) be the minimum number of comparisons necessary in

the worst case. This corresponds to a path that is followed

down to an outcome, which is just the height uf the tree. So:

k = C(n) (2)

and then

2 C ( n )  > n! (3)

Taking the log 2 of both sides

C(n) a log2 n! (4)

Approximating this using Stirling's formula gives

log n! n log n - nlln 2 + 112 log n + a (5)

This shows a lower bound of (n log n) on C(n).

This means that no comparison based method will work in

less than (n log n) comparisons, and that any comparison based

method attaining (n log n) comparisons is considered optimal.

Unless otherwise stated, all logs will imply log 2 .
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Distributive Partitioning Sorting is a union of two classes

of sorts; partition-exchange sorts and distributive bucket

sorts. These classes of sorts will now be discussed, and then

DPS will be presented.

1.3 Partition-Exchange Sorting

A number of sorting algorithms use an approach known as

Exchange Sorting. This class of methods uses the idea that if

two keys are found to be out of order, then the records are

exchanged. The position in the file of the elements being

exchanged can also be thought of as being swapped or

interchanged. The exchanging continues until no more pairs are

found to be out of order, and the entire file is sorted.

One such exchange sort is called Quicksort. This

algorithm was first presented by C.A.R. Hoare in 1962 in a very

detailed paper, and has been the subject of very close study

[HOAR62]. Briefly Quicksort works as follows:

Given an array A1 , A2, ... , An to be sorted

Partition: Position some key, Aj, in its final

position, so that the file is divided into two parts.

A is the partitioning element. All the items in the

left subfile A1, A2, ... , AJ 1  are less than

Aj 9 and all the items in the right subfile A +1 ,

An are greater than A.

Recurse: Now the problem reduces to Quicksorting the

two resulting subflles until the subfiles have one

element left.
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Algorithm Quicksort is presented in Figure I.?.

It :is fitting here to walk through an example of

QUICKSORT. Suppose the elements to be sorted are those

frequently used by Knuth.

503 87 512 61 908 170 897 275 653 426 154 509 612 677 765 703

left = 1 right = 16

On the first pass through QUICKSORT

part = 503

503 87 512 61 908 170 897 275 653 426 154 509 612 677 765 703
i --------- exchange ------------- j

503 87 154 61 908 170 897 275 653 426 512 509 612 677 765 703
i ----- exchange ------ j

503 87 154 61 426 170 897 275 653 908 512 509 612 677 765 703
i - -

503 87 154 61 426 170 275 897 653 908 512 509 612 677 765 703
left ------------------- j i

At this point the final position of the partition element,
503, has been found.

275 87 154 61 426 170 503 897 653 908 512 509 612 677 765 703
----- QUICKSORT -------- -------------- QUICKSORT------------

Now QUICKSORT is performed recursively on the two resulting
subfiles. One more pass on the smaller subfile will be
illustrated.

part - 275

275 87 154 61 426 170

275 87 154 61 170 426
left -----------j i

170 87 154 61 275 426
--QUICKSORT-- -Q-

Note that 275,426, and 503 are now sorted.

5-7
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Figure I.?

Algorithm Qu'cksort

The swap operator :.: is used, where a :-: b means swap the

values of a and b.

1) procedure QUICKSORT (left,right)

-----------------------------------------

// Sort Array A bounded by A(left) to A(right)

-----------------------------------------
2) integer left, right

3) real array A

//------------
// Partition

//------------

4) if right > left

5) then do

6) i - left

7) j - right+1

8) part - A(left) //partition element

II -----------------------------------------
II Burn the candle at both ends until

II the position of the partition element is found

II -----------------------------------------

9) do until j < i

10) do i - i+1 while A(i) < part & i < right

11) do j - J-i while A(J) > part & j > left

12) if j > i then A(i) :.: A(J)

13) end

14) A(left) :-: A(j)

I/-------------------------
I/1 Recurse on the two subfiles

//-------------------------

15) QUICKSORT(left,J-l)

16) QUICKSORT(i,rlght)

17) end if

18) end QUICKSORT



This divide and conquer approach to sorting achieves

the desired result fairly rapidly. In fact, Quicksort is by

far the fastest sorting method available for implementation

on most computers £SEDG78]. This suggests that an analysis

of the running time of Quicksort is appropriate to explain

why this is so.

The worst case for Quicksort is when the file is

already sorted. This is because the partitioning element

being chosen each time results with that element in one

subfile and the rest of the elements in the other subfile.

But suppose a good choice is made of a partitioning element

so that half go to one subfile and half go to the other. In

each successive pass, the algorithm has two subfiles of n2

elements to sort. Since the amount of time spent to find

the position of the partition element is O(n), the number of

comparisons to Quicksort is then

C(n) < n + 2C(n/?) (1)

Solving the recurrence relation

C(n) < n + 2(n12 + 2C(n/4)) at n/2

< 2n + WOO/4 (2)

< ?n + 4(n/4 + 2C(n/8)) at n/4

< 3n + 8C(n/8) (3)

C(n) c kn + 2k c(n/2 k) (4)
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1
The time to sort one element is zero

C(1) = 0 (5)

k k
so we want to stop at n/? = 1 or 2 = n or

k = log n (6)

Substituting (5) and (6) back into (4)

C(n) < n log n + 2 l0g n C(1)

= O(n log n)

So in a good case Quicksort is O(n log n). A rigorous analysis

of the expected case shows that Quicksort is also O(n log n)

[BAAS78]. As it turns out, Quicksort performs faster than any

other sort on most machines. This is due to a low constant of

proportionality in the O(n log n). Bu it is also due to some

modifications that ean be made to the original algorithm. With

these changes Quicksort has evolved to its present day accepted

Implementation [SEDC78).

The first modification pertains to Quicksort's worst case

problems. Recall that the worst case is when the file is

already sorted. This paradox arises because on each pass the

partitioning element divides the file into one subflle with one

element and a second subfile with n-1 elements. This yields the

number of comparisons

n
C(n) = Z (k-i) - n(n-1)/2

k -2

which is O(n2).
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The way to improve this worst case is by choosing a better

partitioning element on each pass. As it has been seen, it

would be nice if the partition divided the file in half, that

is, if it is the median element. Finding the exact median is

time consuming, although it can be done using 1.5n comparisons

in the expected case [FLOY75]. A quick way to get an

acceptable partitioning element is to choose the "median of

three" elements:

A(left) A((left + right)/2) A(right)

where left and right are the upper and lower bounds of the

array A. It has been found that this modification not only

improves the worst case significantly, but also improves the

average case by 5%.

Another problem with Quicksort is in sorting small

subfiles. The algorithm spends much time partitioning,

comparing, and exchanging elements. It seems worthwhile to use

some other sorting method which is more efficient on these

smaller files. The idea is to stop Quicksorting any subfile

with less than some number of elements. The resulting file

then contains a series of unsorted subfiles in their relative

correct order. An Insertionsort (a simple sorting method) then

completes the sorting by ordering these small individual groups

as it scans through the file. It has been shown that there is

at least a 15% savings when Insertionsort is used on subfiles

with at most 9 items in them.
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The last major problem with Quicksort is that it is

recursive. Recursive procedures run very slow on most

computers. Recursion can be removed by pushing and popping the

left and right endpoints of the subfiles to be sorted on a

Last-In-First-Out stack. If the smaller subfile is sorted

first, it can be shown that the maximum stack depth never

exceeds

log (n+l)/(M+2) where M is the small file cutoff.

If M=9 and a maximum depth of 20 is assumed, then Quicksort can

handle up to 10,000,000 elements! And the sorting is done with

very little extra storage.

With these three modifications, Quicksort's run time can

be improved by a factor of 20% over Hoare's original

algorithm. This version has been implemented by R. Sedgewick

and verified. The Sedgewick implementation of Quicksort will

be used in this thesis work as a benchmark for DPS.

Quicksort still is not free of its problems however. The

algorithm has an unstable property, that is, records with equal

keys do not maintain their relative order. In most

applications this is not a crucial factor, but it is an

important consideration when implementing Quicksort. Although

the median-of-three modification is made to improve the worst

case, it is nonetheless unfortunate that the worst case is

still O(n2).
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Quicksort's disadvantages are far outweighed by its

advantages. Aside from oeing practical -and extremely fast, it

uses relatively little extra space. With a day or two of

effort, a working version of Quicksort can be implemented. All

things considered, it is hard to beat. The reader is referred

to £AH074, BAAS78, G00077, HOR076, HORO78, KNUT73, FRAZ7O,

GRIF70, HOAR6?, LOES74, SEDG78, SING69] for histories and

discussions of Quicksort.

1.4 Bucket Sorting

Depending on the reference, this class of sorts is called

Bucket, Distributive, Radix, or List Sorting [AH074, BAAS78,

GOOD77, HOR078, KNUT73], but the idea is all the same.

Elements are distributed according to the value of their keys

into buckets. Each bucket will be assigned those elements in a

predefined range. Each bucket is then ordered by bucket

sorting recursively or by some other sorting method. Then the

items in the buckets are linked together to produce the final

sorted sequence.

For example, here are Knuth's numbers again.

503 87 512 61 908 170 897 275 653 426 154 509 612 677 765 703

Suppose 4 buckets are created where the range 0-999 is

evenly divided such that:

5-13
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Bucket # Values

1 0-249

2 250-499

3 500-749

4 750-999

Then on the first pass

Bucket Heads Links

1 ------ 87 --- 61 --- 170 --- 154 --- nil

2 ------ 275 --- 426 --- nil

3 ------ 503 -- 512 -- 653 -- 509 --

612 -- 617 -- 703 -- nil

4 ------ 908 --- 897 --- 765 --- nil

Recursively sorting bucket #1. 4 new buckets are created

Bucket # Values

1.1 0-62.5

1.2 62.5-125

1.3 125-187.5

1.4 187.5-250

Upon distributing

Bucket Heads Links

1.1 ------ 61 --- nil

1.2 ------ 87 --- nil

1.3 ------ 170 --- 154 --- nil

1.4 ------ nil

Notice that 61 and 87 are now sorted. Continuing to sort these

smaller buckets and appending them to one another will yield a

sorted set of items. Knuth calls this method Multiple List

Insertion (MLI).
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Another variation of this method is to create ten buckets

and scan the key's digits from the least significant digit to

most significant digit (right to left) dropping them into the

appropriate buckets as we go along. This is highly known as

the LSD Ra d ix Sort method. For example, here are Knuth's

numbers:

503 87 51? 61 908 170 897 275 653 '26 154 509 61? 677 765 703

For each successive pass after the first, buckets 0 through 9

are LSD sorted until all three significant decimal places have

been scanned, as in Figure 1.3.

The time to perform this sort is just the number of

significant pla c e s, d, times the number of items. So this

algorithm takes dn passes and is 0(n).

Karp has shown that Knuth's Multiple List Insertion is

also 0(n) if the distribution function of the data is

well-behaved [KNUT73,p.105]. Without going into the details,

Knuth also shows that the best case for MLI is when the number

of buckets, M, is equal to the number of items, n, where the

items to be sorted are uniformly distributed. These concerns

will reappear for Distributive Partitioning Sorting.
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F igure 1 .3
LSO Radix Sorting

Bucket Head Pass 1 (ones place)

0o--------- 170 --- nil
1 -----------61 --- nil

2 -----------512 --- 61? --- nil

3 -----------503 --- 653 --- 703 --- nil

4 -----------154 --- nil

5 -----------275 ---765 --- nil

6 -----------426 --- nil

7 -----------87 --- 897 --- 677 --- nil

8 -----------908-- nil

9 -----------509 - nil
Pass 2 (tens place)

0o--------- 503 --- 703 --- 908 --- 509-- nil

1 -----------512 --- 61? --- nil

2 -----------426--nil
3 -----------nil

4 -----------nil

5 -----------653 -- 154 --- nil

6 -----------61 --- 765 --- nil

7 -----------170 -- 275 --- 617 --- nil

8 -----------87 -- nil

9 -----------897 -- nil
Pass 3 (hundredths place)

0o--------- 61 --- 87 --- nil

1 -----------154 --- 170 --- nil

2 -----------275 --- nil

3 -----------nil

4 -----------426 --- nil
5 -----------503 --- 509 --- 51? --- nil

6 -----------61? --- 653 --- 677 --- nil

7 -----------703 -- 765 --- nil

8 -----------897 n- nil

9 -----------908-- nil
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I t should b e noted that although t h is method i s both

theoretically and practically faster than Quicksort, it uses

much more storage. Recall that Quicksort only needed a

fractional amount of extra space to maintain a stack to

eliminate recursion. Bucket sorts need lots of extra space to

maintain the buckets. The amount of extra space will be

proportional to the number of buckets plus the number of

items. Most implementations use extra space for bucket heads

to show which item is first in each bucket, and for item links

to show which items are in each bucket. The worst case for

bucket sorts is when all but one item goes into one bucket on

each pass. This leads to an amount of work:

i = n(n+l)
i1 2

which is O(n 2).

In discussing bucket sorts, Baase suggests [BAAS78):

"Thus in the worst case a bucket sort would be very
inefficient. If the distribution of the keys is known in
advance, the range o' keys to go into each bucket can be
adjusted so that all buckets receive an approximately equal
number of keys."

Before introducing LSD sorting, she says:

"The reader might wonder why we don't use a bucket sort
algorithm recursively to create smaller and smaller buckets.
There are several reasons. The bookkeeping would quickly get
out of hand; pointers indicating where various buckets begin
and information needed to recombine the keys into one file
would have to he stacked and unstacked often. Due to th'e
amount of bookkeeping necessary for each recursive call, tl'-e

- algorithm should not count on ultimately having only one key
per bucket, so another sorting algorithm will be used anyway to
sort small buckets. Thus if a fairly large number of buckets
is used in the first place, there is little to gain and a lot
to lose by bucket sorting recursively."
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These are precisely the issues this thesis will address

with regard to Distributive Partitioning Sorting. (it is

interesting to note these comments were publish'ed in the same

year as DPS.)

1.5 Distributive Partitioning Sorting

The previous sections were intended to give the reader

enough background to fully understand and appreciate the

advantages and disadvantages of the sorting algorithm about to

be presented.

On the one hand, OPS is an extension of Quicksort. Given

n items, instead of two partitions being created on each pass,

n partitions are created. But the similarity to Quicksort

stops- there, because DPS is not a comparison-based sort.

Rather, it is a distributive based sort more resembling Knuth's

Multiple List Insertion, where the number of buckets created

equals the number of items being sorted.

Basically what is done is as follows:

Given n items to be sorted,

Select: Find the maximum, minimum, and median (middle) ele-

* ments, all of which can be found in O(n) time.

Partition: Using these values, divide the range of the data

between the maximum and minimum into n (buckets) with n/2

equal intervals on one side of the median, and another n/2

equal intervals on the other side.

Distribute: For each item, determine which of the intervals
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Recurse: For each interval with more than one element in it,

sort the bucket using OPS.

The algorithm as originally published by Dobosiewicz in a

pseudo-ALGOL language now follows in Figure 1.4.

In short, here is what procedure SORT does. The items to

be sorted are stored in array A. Line 11 creates a linked list

with the i-th item pointing to the (i+l)st in the list. Tne

list end is designated by S(m)-O. The first half of the array

is sorted by calling LSORT(1,O,m). The array is reordered by

procedure MACLAREN which looks at the pointers and swaps the

elements around to produce a sorted array A [KNUT73,p.596].

Lines 15 to 18 then complete the sorting on the second half of

the array.

Procedure LSORT does the actual sorting. The array L of

list heads is initialized. This array points to the elements

at the top of the buckets being created. Each of these buckets

can be thought of as being a Last-In-First-Out (LIFO) list. As

an element is found to belong to a particular bucket, it is

considered to be the new list head. Its pointer value is put

into the-.L array and the S array is consequently updated.

Specifically, LSORT works as follows. The bucket of size

n headed by pointer 'link' will be sorted. Step 1 is the

initialization. Line 26 sets up the list heads for n buckets

by initializing them to zero. Next the maximum, minimum, and

median elements are determined. Lines 28 to 31 check for the

case where all items are equal and considers them sorted.

5-19

- .- m 'i.--r .



Figure 1.4

Algorithm SORT

1) procedure SORT(A,n)
2) integer n
3) array A
4) begin

real min, max, median
5) integer m

It the declaration of LSORT should be here /1

preparatorypass:

6) FINDMINMAXMED(A,n)

II FINDMINMAXMED finds the smallest, largest, and
median elements of an array A of length n. These

elements are stored in min, max, median respec-
tively. The array A is partitioned by the median
selection algorithm in 2 halves: A(1: Fn/21 ) and
A( Fni 1 +1:n). The Rivest-Tarjan selection algorithm
is suitable for use here //

7) m :.(n+l)l?
8) begin
9) integer array S(1:m)
10) integer i

initialize 1st:

11) for i : step I until m-1 do S(i) :. i+1

12) STim) : 0

sorting:

13) LSORT(1,0,m)
/I LSORT does the sorting. The array S will

contain a list of pointei-s showing the correct
order of elements II

14) MACLAREN(1,n)
II to complete sorting, it is necessary to reorder

the input vector A. An algorithm due to M.D.
Maclaren is doing it in linear time. Any other
method could be used II

now sorting of the 2nd half:
initialize 2nd:

15) for 1 :.1 step 1 until n-m-i do S(i) :- t+m+t
16) Tfn) :=0
17) LSORT(1,m,n-m)
18) MACLAREN(m+I,n)
19) end
20) end3URT
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21) procedure LSORT(linkincr,n)
22) integer link,incr,n

II LSORT performs a list sort on the elements of array A
pointed at by a list stored in array S. The value of
link gives the head of the list and n is the number
of elements of the list. The parameter incr is a bit
tricky: it is used to distinguish between first and
second halves of the array A. Why is it used?
Because, in order to save storage, there is a one to
one correspondance between S and the current half of
A: if S(i) is in the list, it me ns that A(i+incr)
is to be sorted in this pass I/

23) begin
24) integer array L(1:n)
25) integer length,i,j,p

// L is used to store pointers to nonempty lists (kept
in S) //

26) for i := 1 step 1 until n do L(i) := 0

step 1:

27) LFINDMINMAXMED(link,n)

// selects the smallest, largest, and median of medians
elements of list starting with S(link) //

28) if min = max then
29) eijin
30) or i :- link, S(i) while i > 0 do APPEND (i,incr)
31) endT/ this was in case -o identiZil items II
32) i~-e

step 2:

33) for i :- link, p while i > 0 do
34) begin
35) p :- s(i)
36) j :- if A(i+incr) < median then ...*else

II a complex expression finding to which group does the
item A(i+incr) belong II

37) S(i) :- L(j)38) L(j) := i

II Item A(i+incr) is put on top of the LIFO list II

39) end
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step 3:

40) for j := 1 ste 1 until n do
41) TF-L(j) > O en
42) begin
43) length :- -1
44) for i := L(j), S(i) while i > 0 do

length :- length + 1

I/ compute the length of j-th list.
If more than 1 element, call LSORT again, otherwise
append at the end of sorted part of the vector (a
list kept in S). In actual program the array L
should be compacted first: empty groups should be
deleted. This ensur'es that a total number of
pointers will never exceed the number of items I

45) if length > 1 then LSORT(L(j),incr,length)
46) else APPEND--(LFj),incr)
47) end
48) end L-SORT
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Step 2 is the heart of the sorting. Line 33 is a loop

which will scan down the elements of the bucket headed by the

pointer 'link'. Line 35 saves the value of the pointer to the

next element. The bucket value for that item is then

calculated using "a complex expression" to be discussed in

detail later. Line 37 shifts the LIFO list for that bucket,

and line 38 puts that item at the head of the list.

Step 3 is the recursive step. All n buckets are scanned

to see which ones need to be sorted still further. Line 44

determines the size of the i-th bucket. Lines 45 and 46 will

call LSORT if there are still items to be sorted, otherwise the

sorted item will be appended to the output array.

To avoid any further confusion, an example follows:

Given Knuth's numbers

11 2 13 14 15 16 17 18 19 101 111 1?1 131 141 151 16
5031871512161190811701897127516531426115415U91612167717651703

and that Dobosiewicz's suggested partition formula is used:

if x < median then j - L x - min n- +median- -- mmi- F j

- _x - median n- .en+T
if x > median then j -x - median " +

For reasons to be explained, this example will not sort one half

first and then the other half, but rather will sort everything

all together.
For the first call of LSORT:

min - 61

max - 908

med: j'n+l)/12 - 9th , so med-512
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Array S is a set of pointers showing which element is next in

any given bucket. L is an array of pointers showing which

element is at the head of the i-th bucket. Figure 1.5

demonstrates the sorting procedure.

Items in a bucket are found by the algorithm

for i :- 1 to n // For each bucket

p := L(i) II List Head

do until p = 0

print A(p)

p :=S(p) II Next Pointer

end

end

The size of a bucket can be found in a similar manner. By

recursively sorting each bucket of size greater than one, the

sorting process will be complete.

It is easy to see that in the best case this algorithm is

O(n). For perfectly equally spaced data, each bucket would

contain one item after the first pass, and everything is

sorted. Although it seems intuitive that this algorithm is

O(n) in the average case, rigorously showing so is difficult.

In his original paper, Dobosiewicz shows that the algorithm is

O(n) in the expected case for uniform distributions. The

reader is referred to this paper for details of the derivation

DO0B078a].
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Figure 1.5

Example of Distributive Partitioning Sorting

i I 1 2 3 4 1 6 17 819 110/111121 13 141 St 16
A(i) A 503087512106 19017018972 75 5 3 6154750916 1677f651703
J T 2 3 I4 1 5 6 61 718 /9 1 101/111-T-2/131 14 15/161 0
S(i)=L(j) m0 lT°l T °l l l °l °° I° 0 o 0 0 oI 0 lL(j)=i

i=1 S 0 3-0 15617-8 9 10 11121314151 0
A(1)=503 ---- ------ - -- -- I----
j=7 L 0Oj 0 00 01 00 00 0 00 00
L(1 )=0 -- -- -- -- '---- ----- - ---- - --I - -----
L(7)=1 Bkt 1 1 1503 l i
i=2 S 0 0 4 5 6 7 8 9 10 11 12 13 14 15 161 0

A(2)=87 -- - - -- - - -- - - - --- - - - - - - - - - - - -
j-1 L?2 0 00 0 010 0 00 00 0 00
L(1).? Bkt 87 103,I I

i-3 S 0 0 0 5 6 171 8 9 10 11112 13 14 1510

A(3)-62 ----------------------------------------------

L(3 )-. -- -- -- -- -- -- ----.,------ -- --- ---- -- -

L(8)=3 Bk -8 11 - - o03512 I[- t
i-4 S 0 0, 0 2 6 7 8 9 10 11 12 13 14 15 1

A(4 )=61 k 03 -------- ,-- -- ,------------.---- ---'---

j=1 L 4 0 00 0 01 +3+0 0A(4).61 ----- - -
L(1)-4 Bkt 61 03

871I

And so on until all the items have been scanned and sorted.

1-16 1 1 2 3 4 5 6 7 89 1 111213141 16
A(16).703 A 503m08712061908170 97 75653426154 09612677175703
j-13 r 0 00F0 5 0F 0 0F 6 0 9 0 0
S(16)-0 T4 11 0 8 0 01T 0014
L(13).16 Bk 114 7 257 3

8170 03 53 908sTTTTT T R 5TTT93Sze 1 ?T- r- 7

5-25

- --J- _



Now consider the worst case. This occurs when for each

half of the buckets divided by the median, ni? - 1 elements go

into one bucket and one element goes into some other bucket.

Therefore out of n buckets only four get used. The time, T(n),

in the worst case is given by the recurrence formula:

T(n) = cn + 2T(n/2), T(1) = 0

Solving this in a similar fashion as with Quicksort's best case:

T(n) - cn log n + O(n)

which is O(n log n).

It has been shown that DPS has a great advantage over

classical comparison-based sorts because it is O(n) in the

expected case. UPS is also faster because there is no swapping

of elements as in exchange sorts like Quicksort. Rather,

linked lists are kept, where link values are replaced to

reflect the changing bucket statuses. The data values

themselves never move, but instead link values change. In this

way, DPS is much like Knuth's Multiple Insertion which has many

of the same qualities and characteristics.

1.6 Problems with OPS

£ There are many problems with DPS in both a theoretical and

practical sense. They vary from fundamental problems with the

algorithm, to large time and space overheads, to theoretically

bad worst case running times. These will be discussed here

with suggested solutions that form the basis for the

implementations developed in this research.
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There are several flaws in the algorithm as originally

published. First of all, it is not necessary to find the

maximum, minimum, and median in the preparatory pass (line 6).

Then there is a logic problem with the divide and conquer

approach used in procedure SORT. The logic divides the array

in half. The first call of LSORT sorts the first half of the

array and the whole array is then reordered by procedure

MACLAREN. For example:

SORT( 7 8 10 3 6 9 4 11 )

LSORT( 7 8 10 3 )

MACLAREN yields ( 3 7 8 10 6 9 4 11 )

Then LSORT is called for the second half of the array:

( 6 9 4 11 ) . This will yield two sorted vectors.

( 3 7 8 10 4 6 9 11 )

These now need to be merged to produce the correct ordering.

To correct this problem, LSORT needs to be called only once to

sort the entire array, and the code for 'incr' is eliminated.

Otherwise the two sorted halves need to be merged.

Another problem is the partition formula, restated here:

if x < median

L X-min n -?2
then J:- Lmedianmin . 2

else J:-x-median n--1 ne~___e j = max-median * + + 2

In the else clause, the range of

x-median is (0,1]
max-median
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which will yield values in the else expression of

For example, with 16 buckets this formula will give values from

9 to 16, which is the desired result. It can be concluded that

the else clause is a valid expression.

Now consider the then clause, where the range of

x-min

median-mi n

This is inclusive because the median is included in the domain

of the formula. The entire formula will yield values

[1 LI?/ ] 1
For example, with 16 buckets, this will give values from 1 to

8. However, in only one case will these fornvulas ever yield a

value of 8. That case occurs when the bucket value for the

median is being calculated. A better choice for the Ln+1)/

th bucket should be made.

This can be done by choosing the then expression

me x-min n-2 + for x < mediandian-min2 * 2 ?

where min2 . min-O.O000001. So now the range for

(x-min)/(median-min2) is [0,1), and the range for. the then

clause is [1, Ln/ ). For 16 buckets, this will yield

values from I to 7 which is closer but not quite there. Now 8

is missing. It will soon be seen how this problem is solved.

For now, consider the case when n-? in the then clause.

For example, a bucket contains values

(61 87)
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Here, FINOMAXMINMED will yield

MAX = 87 MIN = 61 and MED = 61

The median is chosen to be the 1n+l)l _1 th (or 1st) element.

Using these values in the then expression will give a zero or

some other small value in the denominator. This can easily be

corrected by choosing the median to be the I(n+1)/- th

element. So now:

MAX = 87 MIN = 61 and MED - 87

But now upon evaluating the then clause, both elements yield

bucket values of 1. This is because the (n-2)12 term of the

expression will be zero since n=?. A suggested correction for

this is to evaluate the then clause

m x - mi n  n +

Iedian-min? * T

which yields integer valuez in the range [1, L(nl2)+i ).

So for 16 buckets, the values 1 to 8 will be generated, where

now 8 is included as desired. For odd n, the extra bucket

value will be generated in the then clause.

There i. yet a further problem with the then clause.

Consider the case where the median is equal to or nearly equal

to the minimum. Previously, the concern was that a zero in the

denominator was likely. This might still be the case for an

input vector such as:

( 61 61 61 61 87 92 )

Here: MAX - 92 MED . 61 and MIN - 61
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Again there is the same problem as before. One way to get

around this is to add the code:

if min . median then median := mix

This way everything will be evaluated in the thin clause. Note

that the case where the median is equal to the maximum is of no

concern. This is because the else clause would never get

evaluated in such a case. But the median

still causes some headaches, as it will soon be seen.

DPS proved to be very slow when implemented as previously

presented. In fact, the running time was 75% slower than

Quicksort on the average. It was obvious that to become

ccmpatible with results published in Information Processing

Letters, the algorithm needed to be optimized as much as

possible. Later publications indicated that a certain amount

of code optimization was being done on the original OPS

algorithm.

As pointed out by Lamagna, Bass, and Anderson [LAMA80],

the consideration of constant factors in algorithms is

important, as is the case here. Sloppy code and inefficient

algorithms can be the source of large bottlenecks. DPS

requires the selection of the maximum, minimum, and median
I

elements. The published version of DPS used a 15n crude median

selection algorithm [KNUT73, p. 216] and it is possible to use

an inefficient 2n method to find the maximum and minimum.

The implementation of OPS in this thesis uses

Floyd-Rivest's 1.5n exact median selection algorithm [FLOY75],

and a 1.5n maximum-minimum selection algorithm; a significant
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savings. This median selection method chooses the exact

median, as opposed to the crude estimate method used in the

prior implementation. Although there is still a high overhead

for tnese algorithms, it is by no means as great as for the

methods originally suggested by Dobosiewicz. The Floyd-Rivest

method uses n extra storage as opposed to n/2 extra for the

suggested method, but the time savings is well worth the extra

space. The reader is referred to [BLUM73, FUSS79, SCH076] for

more details of median selection.

There are two bottlenecks that arise in DPS as they did in

Quicksort. One of these is the p-oblem brought about by

recursion. As Lamagna, Bass, and Anderson [LAMA80] point out,

much time and space is used in most implementations of

recursion. In most cases the overhead can be eliminated by

creating a stack to store crucial values and efficientl'y coding

some type of outer loop to simulate the recursion. This is

true with DPS also. It has been found by this author that the

recursion can be removed without creating extra stacks or using

extra space. This is done by taking advantage of a suggestion

Dobosiewicz makes in Step 3. He states that "the array L

should be compacted", ar.d this can be done quickly in O(n).

The extra available space created by this compression allows

room for any needed bucket heads in subsequent levels of

recursion. Everything else being performed with pointers is

done in place, so no extra space is required.

Additionally, there is the matter of what to do with small

buckets, which is similar to the problem of Quicksort's small
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subfiles. At some point it becomes advantageous to use an

efficient- sorting routine on these small buckets rather than

recursively using OPS until the bucket size is I. It was found

that for OPS, it is more efficient to use an Insertionsort on

bucket sizes less than or equal to 9 or 10.

Further improvements can be mrade in the algorithm's run

time by optimizing the code. It is possible to combine certain

loops in what can be considered to be the heart of the

algorithm in Steps 2 and 3. Step 2 performs many common

arithmetic operations repeatedly. These may be removed from

the loop to save time. It is also possible to optimize Step 3

and the code resulting from removing recursion such that a very

tight efficient loop can be implemented.

Unfortunately, there are certain characteristics of the

algorithm that cannot be dealt with. It turns out that due to

the nature of the Last-In-First-Out (LIFO) lists used as

pointers for the buckets, BPS is unstable. Records with equal

keys may not necessarily be output in the same relative order

in which they were input. In fact, if an odd number of passes

is made over the equal keys, they will be sorted in reverse

relative order. If an even number of passes is made, the items

will be stably sorted. Quicksort also has a stability problem,

although the reasons fo- this are entirely different. It is an

interesting phenomenon.

As Baase pointed out, there is a large storage overhead

associated with this type of algorithm [BAAS78]. For the

pointers alone, the overhead is 2n, and for the median
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selection it is an additional n. However, with today's virtual
t

memory environments, the impact of this consideration is

minimized. Only for extremely large n woulp problems in

storage occur.

The reader is referred to lAKER78, BURT78, DATA78,

DOBO78b, DOB079, HUTT79, JACK79] for additional arguments

concerning the practical significance of Distributive

Partitioning Sorting which are of little concern to this work.

The BPS algorithm used in this work is presented in Figure 1.6.

Summary of suggested improvements to OPS:

• Delete preparatory pass

" Remove divide-and-conquer approach

• Adjust the partitioning expression

• Handle the minimum - median case

" Remove recursion

• Optimize loops

" Multiply by 0.5 instead of dividing by 2.0

• Eliminate mixed mode arithmetic

• Take common expressions out of loops

" Choose the median - (min+max)/?

" Use Insertionsort on small buckets

5-33.
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Figure 1.6

Algorithm DPS

procedure DPS(n,A)
integer arra L(n),S(n)
integer n,length,i,j,p link
arrayA

for i:= 1 step 1 until n do L(i):=O
Ln): =1
for i:= 1 step 1 until n-i do S(i):=i+1

): =o
top:= length:=n

do while(top < n) II Recurse II
FT- DTAXMINTL(top))

/I Find max and min of list pointed at by L(top) II
II Note: Adaptive methods are placed here //

link:=L(top)
L(top):=O
if min = max then APPEND(link)
eTse

Tor i:= link,p while i>O do
begin

p:=S( i)
j:= partitioning formula that distributes A(i)
S(i):=L(j)
L(j):=i

end
COMPRESS('L,top,n, length)

// List heads are pushed to the back of array L such
that the front of the array is all zeroed. top:=
the first non-zero pointer I/

length:=O
for i:=L(top),S(i) while i>O do length:=length+l
do while (length < Tnsertionsort cutoff)
- A-PTND(L(top))-

L(top):=O
top:=top+1
if top < n then II Find length of next bucket II

beg iF
length:=O
for i:=L(top),S(i) while i>O do

length:=length+l
end

else exit DPS
end

end OPS
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Having addressed most of the issues raised by Baase

earlier, the adaptive methods of BPS can now be

discussed. As it has been shown, the worst case for OPS

is O(n log n), which is no better than Quicksort on the

average. The question is: Can anything be gained by

knowing something about the distribution of the data in

advancep And, if so, is it worth it?
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CHAPTER II

ADAPTIVE METHODS FOR UNKNOWN DISTRIBUTIONS

Recently, work was done by Meijer and Akl [MEIJ8OJ to try

to "Hybrid" Distributive Partitioning Sorting according to a

known distribution. Though this work is promising, it is by no

means general enough to handle empirical or general

distributions. The authors suggest,

"...when the distribution of the input sequence is
not known, another topic for future research would be
to study the problems associated with estimating this
d i s tribut ion."

When that paper was published, the proposal for this thesis was

independently being formulated and exactly those ideas were

suggested as a course of thesis work. (In fact, this author

did not receive the above publication until seven months after

it was issued, and the thesis work was well into the

experimental stage.)

The purpose of exploring adaptive methods for DPS is to

improve its worst case performance. It is readily seen that as

the data distribution becomes more and more skewed, the worst

- case is approached. Dobosiewicz shows that the worst case is a

set of factorials. It is desired, then, that these methods be

'adaptive' in the sense that they adjust to whatever data

distribution is given.

Recall that OPS divides the range of the data into n

partitions based on the maximum, minimum, and median (or mean)

values. Half of these partitions are all of one fixed length,Ky 5-36



and the other half of another length. For skewed

distributions, the resulting bucket sizes could vary greatly.

It is the goal of the adaptive methods to examine the data

distribution and somehow transform these potentially large

'bucket sizes into buckets with as close to one item per bucket

as possible (DPS's best case). Figure 11.1 graphically shows

these ideas and concerns.

The search for various adaptive methods has crossed many

different fields of mathematics, including: linear algebra,

numerical analysis, statistics, probability, combinatorics, and

plain old "horse sense" math. These approaches will be

discussed in this section along with their advantages and

disadvantages.

A number of questions arise as these adaptive methods are

being looked at:

* What information about the distribution will be

useful?

• How can the information be used to obtain the goal?

* Is the information and goal obtained easily and

quickly at relatively little cost?

In discussing DPS, the term bucket size refers to the
number of items per bucket. Partition length refers to
the length of a partition within the range of the data.
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Figure II.1

Concerns of Adaptive Methods

max max

Find Data Distribution DPS Partitions

n n

.DPS Bucket Sizes Desired Bucket Sizes
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11.1 Frequency Distribution Curves

If a small sample of the data is taken and distributed

into buckets, then the bucket sizes can be thought of as being

a set of frequency occurrences. Often this set of frequencies

fits a theoretical distribution such as Unifor,,, Normal,

Poisson, or Exponential, as shown in Figure 11.2. Many times a

curve can be fit to these frequencies. Usually, the

probabilities of the frequencies are found and a curve is fit

to them. This is known as a Probability Density Curve. By

finding such a curve, it might be possible to find a

transformation to appropriately adjust the partition lengths so

the bucket sizes are more uniform. Some methods of finding

Probability Density Curves will now be discussed.

11.1.1 Method of Moments

Variop: statistics concerning distributions can be

gathered such as the mean, skewness, kurtosis, and others.

These are called moments. The moments about the origin for the

elements xI , x 2 , . xn can be calculated by

m ... nnI n

mr n i X= 1

According to Elderton and Johnson [ELDE69], if n is the

number of points and mr is the r-th moment, then a frequency

distribution curve can be fit to:
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Figure 11.2

Frequency Distributions

1111111 IIlI 111111
Uniform Normal

Poisson Exponential
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I) Y = d + bx, where

a = i 0

b 3 1 m

2) y - a + bx + cx2 , where

5 m 2

b _ 3 1 m l

n 2n n

15 ( . m2
4n n

3) y = a + bx + cx 2 + dx3

a 3 35 m?2

15 5 1 7 m3

15 13

C W 4 n n- 0in - n r
0 n

35 3 1+ 5

A system of equations fitting various commonly occurring

distributions were developed by Karl Pearson. These equations

are for curves of the form

b + bx + bx - 0
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Type I) If the roots are real and of different sign

m mY - YO 1 + L- ) • ( i - x2

a1 a 2

where aI - root, - (distance from origin to mode)

a2 = root 2 - (distance from origin to mode)

and m 1 /a1 = M 2 /a2

Type VI) If the roots are of the same sign.

Y= yo ( x - a ) . x

And so on for other types.

There is also a set of normal curves known as Gram-Chalier

curves which use moments in fitting a curve to a distribution

[GRAM45]. Given a normal frequency function f(,x), and g(x) is

the standard normal function where mean=0, and variance-i, such

that

g(x) = e x 21

then

c3 (3) c4 (4)
f(x) = g(x) + = 3 x + (x).4

where c3 = -M3 - - skewness coefficient

c4 = M4 - 3 - excess coefficient

c5 = -M5 + l0m 3

c6 W m6 - 15m 4 + 30

The problem with these moment methods is that an excessive

amount of time is used in determining the moments and

coefficients of the equations. The number of arithmetic
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operations being performed would rapidly become very large.

Although moment methods' would provide a good guess to the

distribution, they lack the efficiency that is' desired for a

modification to OPS.

11.1.2 Curve Fitting

Another way to 'discover' the distribution is to try to

fit a curve [DANI8O] to the probability density function based

on the sampled probabilities. The first thought that might

come to mind is to try a high degree least squares fit

[STRA76], such that a third or fourth degree polynomial fit.

Although a large number of calculations are needed, it would

not be as great as with the momo, calculations, especially if

the number of sampling cells is kept relatively small.

The ieast squares fit would work nicely if the

distribution were smooth. In practice, though, many

distributions do not fit smooth, monotonic, or well behaved

curves (i.e., dictionary data, last names, social security

numbers, etc.). Leasts squares methods might yield a badly

fitting curve (GERA78].

Suppose a straight line fit is used between cell

probabilities as shown in Figure 11.3. For each line, the

slope and y-intercept can be saved and used later to determine

what bucket to adjust an item to. But can this practically be

done? Given an item and this sample probability density curve,

the item's relative position in the range needs to be found.
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Figure 11.3

Line Fit to Frequency Probabilities

1

0 2 3 4 5 buckets
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The only sensible way to accomplish this is to determine the

probability that an item will fall into the i-th bucket with

respect to the rest of the data. This suggests we need to find

the Cumulative Distribution Function (COF) as opposed to the

Probability Density Curve (POC).

The CDF can be found by integrating the POC. The

preprocessing necessary to find the POC by these prior

techniques would be quite time consuming. A method will now be

suggested to find the CDF quickly and efficiently.

11.2 Cumulative Distribution Function (COF) Method

A more useful tool for adaptive methods is the Cumulative

Distribution Function. This was used independently in work

done by M~eijer and Akl [t4EIJ8O] for known distributions. [f

f(t) is the Probability Density Curve, then the Cumulative

Distribution Function is

F(x) - jx. f(t) dt

If the probability, pi for an item falling into the

i-th sampling cell is given, then the cumulative

probability distribution for the i-th cell is

p1  P k P0 - 0 pn= <PiiI

A useful property of this curve is that it is continuous

monotonic nondecreasing. Fitting a line between each

successive pair of sampling cells should give a good

estimate of the Cumulative Distribution Function.
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It will now be shown that if the cumulative

distribution function is known or can be approximated,

then the resulting transformation of items by this

function is uniform.

Given:

X is the underlying random variable of the data.

Gx(x) - P(X < x) (1)

is the Cumulative Distribution Function. It is continuous

monotonic increasing so the inverse, G X-(x), also

exists.

Y is a random variable where Y a Gx(X) is the transform

data. To find the distribution of y, we observe that the

distribution of Y is uniform on [0,11 because

Fy(y) - P(YcY) by def of COF

- P(Gx(X) < y) substitution
-1

= P(X < G X  (y)) inverse of both sides

= Gx(Gx-1(y)) by def (1)

-y

Therefore the transformation is uniform.

Figure 11.4 shows how the CDF takes any distribution

along the x-axis and transforms it onto a uniform

distribution on the y-axis. This implies that if a sample

COF can be found, then the resulting items can be spread

uniformly among the buckets. This is essentially what is

- - done "in reverse" when a uniform random distribution is

,'transformed into another distribution in simulation

systems (GRAY8O].
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Figure 11.14

Cumulative Distribution Function

Uniform Trnnsformation

max
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Figure 11.5 shows a probability density curve and its

corresponding cumulative distribution function.

A very simple, practical algorithm can be written using

the idea of cumulative distribution functions to create an

adaptive DPS method.

Step 1) Sample the data and distribute it into cells by

k -Ljm in] . M + 1

where mx2 - max + .0000001 and M is some arbitrary

number of sampling cells. This formula yields integers

in the range [1,M].

Step 2) Find the cumulative probabilities of the M cells.

Step 3) Fit a line between each pair of cumulative

probabilities using P0 O.0 and P =0.9999999. Save

the slope and y-intercept of each line. This yields a

sample Cumulative Distribution Function.

Step 4) Distribute all of the items by first determining

which sample cell it belongs to, say k, and then use

the k-th line equation to find what bucket the item

really falls into. Note that to insure the COF is

, monotonic increasing, as opposed to nondecreasing, each

sampling cell is initialized to have one item. This is

to guarantee the inverse COF function exists.

Figure 11.6 shows these steps pictorially, and Figure 11.7

describes the algorithm in detail.
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Figure 11 .5

Sampled Probability Density Curve

and Its Cumulative Distribution Function

f(x)

F( x)
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Figure 11.6

The Steps of Algorithm CDF
n m

Step 1

min max min max
Data Distribution Sample Items into Cells

1 Step 21

min max min max
Find Cumulative Probabilities Determine Sample CDF

1 S 4 n

n
*min maxDistributemtem IResulting Distribution.o , Distribute Items
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Figure II.7

Algorithm COF

The following algorithm is placed after FINDMAXMIN in DPS:

integer sample
if length > sample then

begin II CDF II
inee k
array CELL(O:m),M(m),B(m)

I/CELL -- sampling cell$
m -- number of cells
M -- slope of lines
B -- y-intercept of lines I/

FREQUENCY(L(top))

/Take a frequency count of items assuming a
uniform distribution into m cells ranging
from min to max. Each frequency is initially 1.1I

CUMPROB(CELL,m)

IWFinds the cumulative probabilities of frequency
cells II

CELL(O):-O.O
CELL(m):-o..9999999
LINEFIT(CELL,m)

/Fit m lines to m+ points. Put slopes Into N
and y-intercepts into B II

for i:=L(top),p while i>0 do
beg in

p:-S(I)

k:. -m n a • l I1 find cell I/

" "max-rn2 " m + B(k)) . lengt + 1

II Transforms data Into uniform distri-
bution II

i end

end 
en

eT-e OPS(L(top)) II as usual II
COMPRESS(L,top,n,length)
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As an example, suppose there is a skewed distribution

like that in Figure 11.6. If there are 100 items being

distributed into 100 buckets, then note what happens to the

items that would normally have gone in, cell #1. The

cumulative probability for this cell ranges from 0.0 to

0 7. Therefore 70% of the data falls into cell 1.

Plugging the values of the items belonging to cell number 1

into the first line equation and multiplying by 100 will now

yield bucket values from I to 70, instead of 1 to 20 as

would normally have occurred in DPS. This is the result

that is desired from adaptive methods.

11.3 Ranking Method

Now the question arises: Is it really necessary to

find out anything at all about the distribution? In fact,

there is a simple method by which to adapt the partition

lengths to a particular data distribution without gathering

information about the distribution itself. This can be

achieved by the following algorithm:

Step 1) Sort a sample of the data by some fast method.

Step 2) Divide the number of items sampled by the number

of cells (mM), and then choose Partition Endpoints by

selecting every (mIM)th item. Note that M should be of

the form 2kI to facilitate the binary search in step 3.

Eo-min-0.0000001, and EM-max.

4" iStep 3) For each item in the file, perform a binary

search to find what cell it belongs in.
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Step 4) Find the bucket it falls in by the expression:

x E -1 +k-i )

where k is the cell found

E k -- k-th right side endpoint

Eki- k-th left side endpoint

n -- number of data points

M -- number of cells

if the number of cells and the sample size are kept small and

fixed, then the overhead associated with the binary searching

and sorting will be a fixed constant factor. Figure 1[.8

outlines the method.

It is hoped that an experimental analysis of these methods

will show that BPS can be improved to handle unknown

distributions.
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Figure 11.8

Algorithm RANKING

FINDMAXMIN(L(top))
intger sample
if length > sample then

begin
initeger k
array E(m)
QUICKSORT(sample,RA)

IIOrder the sample array RA I

for i:= 1 step 1 until m do E(i):= RA(i .sample/rn)

IIGet every (sample/m)th item /

E(O):.min2
E (m):=max
1 ink:=L(top)
L(top) :=O
for i:.link,p while i>O do

begin
P:=S( i)
k:=BINSEARCH(x,E)

J/ Find cell x belongs to by binary search I

j:= x-~ -) + k-i1 l n t9

S(i):-L(j)

end
end
else DPS(L(top)) IIas usual 1

COMVMrS(L,top,n ,length)
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CHAPTER III

EXPERIMENTAL DESIGN AND ISSUES

This chapter is intended to describe the issues and

problems in designing appropriate experiments for DPS and the

adaptive methods. It could also serve as a guide for other

researchers conducting work in a virtual machine environment

where algorithm timings are needed. The last part of this

chapter describes the reasons for choosing various parameters~

used in the experiments.

I11.1 Experimental Problems and Issues

There are a number of considerations in designing

experiments to test algorithms. Lamagna, Bass, and Anderson

CLAMA8OJ discuss many of these in developing a research plan to

study the performance of algorithms. They note that the

programming language chosen has a large effect on how well a

program will perform. Various compilers will generate widely

different machine code as would be the case for COBOL, FORTRAN,

and PL/I compilers. The University of Rhode Island Academic

Computer Center houses a National Advanced System/S Model 7031

which is an IBM 3031 equivalent. Due to the advanced features

of the PL/I Optimizing Compiler, PL/I was chosen to code the

aforementioned algorithms. As will be seen, PL/I also contains

some useful compiler options.

The machine chosen to execute on plays a large role in how

fast a given program will run. For example, the floating point
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operations on a CDC machine are many times faster than on a

comparable IBM4 due to the hardware configuration of the

machines. Thus it should be noted that while one algorithm may

outperform another by a large factor on one machine, this may

not necessarily be true on another. This has been seen in

previous experiments conducted with DPS [D0B079].

There now comes a problem common to many fields of

endeavor. And that is, the extent to which one considers the

work of the theorist when putting a concept into practice. In

computer science, this problem is exemplified by the conflict

between theoretical order of magnitudes, and practical

considerations for loop control, testing, bookkeeping, and

memory accesses. These latter factors can contribute a high

constant of proportionality to the theoretic order of

magnitude. A (2n log n + 3n) algorithm will, for example,

generally perform better than a (3n log n + 5n) algorithm, even

though they are both theoretically O(n log n).

This consideration lends itself to the issue of crossover

points, that is, the point where one algorithm begins

outperforming another. For example, a 2n 3  algorithm is

better than a 50n 2algorithm for n<25, although 'for n>25 the

reverse it true. It will be seen where the crossover is for

OPS and Quicksort.

Lamagna, Bass, and Anderson [LAMABO] al-so point out that

in addition to these issues, an algorithm can be greatly

improved by various modifications, although the order of

magnitude stays the same. By utilizing clever data structures,
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loop control, and insights, an algorithm can greatly improve

its performance as was the case with Quicksort. Another

example of this is the remarkable insight of Dobosiewicz in

transforming 0(n2) Bubblesort into an algorithm which

outperforms Quicksort on input sizes less than 2000 [008080]!

But while one constant factor may decrease due to a change,

another could increase. So the question is: At what point is

cleverness and extra overhead not worth it? There comes a

point where simplicity may outweigh efficiency.

111.2 Experimental Design

As mentioned, work for this thesis was done on a National

Semiconductor plug compatible IBM computer in 'a virtual memory

4 environment. Due to paging, cycle stealing, swapping, and load

on the computer, the run time of two identical experiments

could vary by up to 25%. Experiments were designed to

eliminate this undesirable nos" from the run times.

Lamagna, Bass, and Anderson suggested determining weights for

straight line code in an algorithm and then counting how many

times each section was executed.

These estimates could prove to be inaccurate in practice

if they are not chosen carefully. A method of obtaining fairly

accurate run times was used in this work, and will now be

described. The PL/I compiler used contains a COUNT option

which produces a printout of how many times each statement is

executed. This can easily be simulated in languages not

containing this feature. There is also a LIST option which
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generates listings of assembly code similar to the machine code

produced by the compiler. Using instruc'tion timings available

in the IBM System/370 Model 158 Functional Characteristics

[IBM78], it is possible to calculate the timing for each

instruction. Although this is tedious, it does yield accurate

run times. And with some amount of work, this process can be

completely automated. By multiplying the count of each

instruction by its timing, and then summing over the entire

instruction set, a good estimate of the algorithm's run time

can be achieved. In addition, the problems associated with job

loads, and virtual paging environments are non-existent.

There now remain a number of variables to be identified

for the experimental design [MYER79].

Irrelevant Variables: System load, virtual memory paging,

swapping, cycle stealing

Independent Variables:

Quantitative: Input size

Qualitative: Distribution type, algorithm used

Fixed: Sample size, cell number, Insertionsort cutoff

Random: Values in the random data file

Dependent variables: Time

Benchmark Model (Controlled Experiment):

Quicksort vs. DPS

Practical Requirements: No array size may exceed 3?767 in

PL/I, Time is money.
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Experimental Design:

Benchmark Distributive Partitioning Sorting algorithm

against Quicksort, and compare the results to those

published in [DOB079]. The version of Quicksort used is

the Sedgewick implementation, and DPS uses an

Insertionsort cutoff at 9 and a median chosen to be the

mean of the max and min, or midrange, (max+min)/?.

Determine run times using

Algorithms Distributions Input Sizes

OPS (mdrg) Uniform 500
median =
midrange 1000

DPS (median) Normal 5000
exact median

selection 10000

Ranking Poisson 20000

CDF Exponential 30000

Analyze

• The effect of a distribution with an algorithm.

• The effect of the input size on an algorithm.

• An algorithm's performance against another

algorithm within a distribution.

Each experiment consists of five runs. The run times and

various percentages are taken from the average of these five

runs. Each of the five runs contains different random values

as data.

It should be noted that the Poisson distribution is

continuous as opposed to discrete Poisson.
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Due to the nature of the experimental design, there are

certain constraints on what can be said about the conclusions

to be reached. Essentially the experiments are simulating the

run time as if the program were being given stand alone time on

a.n IBM 370/158. In reality, operating system dependent factors

are difficult to measure, and would contribute to the actual

run time. But these have been eliminated in the hope of

producing good relative execution time results.

Since single precision real numbers were used in previous

BPS experiments, they were used here also. Due to the large

amount of arithmetic operations in DPS, changing the input

stream to integer or double precision could radically change

the timings. Alphanumeric keys would have to be adapted in

some way so DPS could work with them. These are problems which

do not occur in comparison-based sorts.

111.3 Discussion of Fixed Variables

There are three fixed variables that need values assigned

to them. One of these is the Insertionsort cutoff point for

DPS. The optimum cutoff for DPS(mdrg) in the uniform case was

determined by starting with a value of 6 and incrementing by 1I
until it was found. A cutoff of 9 or 10 was found to work

best. Since 9 was known to be the cutoff for Quicksort, 9 was

also chosen as the cutoff for DPS. It should be apparent that

a different cutoff might be possible for each BPS algorithm,

input size, and distribution. To avoid a lot of extra work to

determine cutoffs for the two BPS methods, and out of fairness
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to OPS(mdrg) in the uniform case, 9 was used as the

Insertionsort cutoff in all experiments. This value should

also be optimum for the adaptive methods if they do indeed

transform the distributions to a uniform spread.

Another fixed variable is the number of sampling cells

used in the adaptive methods. The value chosen for this

variable is closely related to the sample size. The number of

cells and the sample size should be the same for Ranking and

COF out of fairness to each. Ranking has a binary search that

requires that the number of cells be one less than a power of

two. Good values to choose might be 7, 15, 31, 63, and 127.

The higher the number, the more work the O(log n) binary search

will have to do.

The idea of the COF method is to sample the Cumulative

Oistribution Function. It would be desirable if the cells

could sample statistically good proportions of the range of the

data. If each cell samples a 1" o? 3% proportion, then an

appropriate number of cells can- be- chosen which divides the

range into 1% or 3% intervals. Figure III.1 lists the possible

cell proportions.

Figure 111.1

Cell Proportions

k Proportions

k Cells (2 -1) 100/# Cells

3 7 14.29
4 15 6.66
5 31 3.23
6 63 1.59
7 127 .79
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Values of 7 and 15 cells would not divide the range into

small enough proportions to be of much accuracy. 127 cells

would have too large a k value for the binary search. 63 cells

is not close to either 1% or 2% and it would be ambiguous to

choose one or the other.

If. 31 cells are chosen, the range is roughly divided into

3% proportions. This is smallI enough to have a good amount of

accuracy, and efficient enough for use in a binary search.

The sample size now needs to be determined. Using

proportional sample statistics and standard normal distribution

tables, a good sample size can be found if 3% proportions of

the data are desired.

Given 3% proportions with .013 error and 90% confidence,

then a good sample size is 469. Since 31*15 is 465, a size of

465 was chosen. This also allows for easy adaptability to 15,

cells if there is a large overhead with 31 cells.

5-62



CHAPTER IV

RESULTS AND CONCLUSLONS

IV.1 Expectations, Results, and Conclusions

Before the experiments were conducted, one might

hypothesize certain results to occur. As already discussed,

the adaptive methods should transform an unknown distribution

into a uniform distribution. It is to be expected that in many

ways, the performance of these methods for skewed distributions

will resemble the DPS methods in the uniform case. The only

exception here would be the run time differences due to

overheads in the adaptive methods.

In the uniform case these methods will be distributing

items into buckets, and on the first pass, one might expect a

certain percentage of the buckets to be used. Certainly, all

of the buckets will not get used, and using combinatorial

analysis, the expected percentage of buckets used can be found.

Given one item and n buckets, the probability that the

i-th bucket is empty is

n-1(1
(i)

n

For all n items, the probability the i-th bucket is empty

is

(-!n
(2)

n
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So the percentage of buckets being used is

100. (1 -

Since

Lim (n-1)n 1n *,,,(4)
n n

The expected percentage is

100 ( - ) 63.21%

e

Recall that one of the concerns of analyzing algorithms is

the constant of proportionality of the theoretic order of

magnitude. Determining these constants based on the observed

run times should help determine where crossovers might occur,

that is, at what input size one algorithm begins outperforming

another.

Table 1.1 illustrates the Benchmarking results. The Time

Quicksort/Time OPS gives a percentage of how much better DPS is

performing than Quicksort. Comparing results observed with

those previously published in [DOB079], (which appear in the

Expected column) it can be seen that this benchmark of OPS

outperferms previous results except for small sample sizes.

Figure IV.1 illustrates these results graphically. Notice

there is a crossover where DPS begins to outperform Quicksort

somewhere below 2000 items. Sedgewick [SEDG78] noted that the

expected run time of his implementation of Quicksort would be

proportional to

10.6286N log N + 2.116N
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Table 1. Benchmark

Run Time rime Quicksortlrime OPS
Input Size Mil ise cs

Quicksort OPS Expected Observed A

2000 464-25 414.86 1.16 1.12 -.04

5000 1302.88 1036.80 1.24 1.26 .02

10000 2818.94 2051.6? 1.27 1.37 .10

15000 4420.06 3108.83 1.28 1.42 .14

30000 9413.27 6222.61 1.35 *1.51 .16

50000 -- 1.46 1.63 * .17

*estimate
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Figure IV.1

Benchmark
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In fact, the run times (in microseconds) observed are

approximately double this formula.

Since DPS is O(n), one should expect to fit a linear

expression to its run times. For these experiments, the

expression

207N

works very well. To find the crossover point, the equations

are set equal to one another and solved for N.

2 ( 10.6286N log N + 2.116N ) 207N

Log N = 9.5388

N = 744

which conforms well to Figure IV.1.

Although Quicksort accesses items directly, and DPS

accesses items indirectly through a pointer list, DPS is still

faster. In reality, one must consider that as the algorithms

begin recursing, Quicksort will demonstrate a higher cegree of

locality than DPS in searching for items, and therefore

generate fewer page faults. As pointed out earlier, this

operating system factor does not play a role in these

experiments.

The first four sets of tables to be presented list results

of how well each algorithm performed on each of the

distributions. It is expected that the DPS methods perform
I

worse as the distribution becomes skewed, and the adaptive

methods will behave approximately constant.

Tables 2.1 - 2.3 show results for DPS where the median is

chosen to be (max~min)/2.
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Table 2.1 is a table of the largest bucket sizes created

on the first pass. The average of thae largest buckets from the

five runs and the maximum bucket size out of the five runs are

listed. As expected, the sizes get larger as the distributions

become more skewed.

Table 2.? shows what percentage of buckets are used in the

first pass through the data. This reflects how efficiently the

algorithm is distributing the data into buckets. A lower

percentage might indicate that the algorithm is doing a certain

amount of recursion to handle the larger bucket sizes being

created. The first column is the percentage of buckets with

sizes greater than or equal to one, and the second column is

for those with sizes greater than or equal to two. As was

expected, OPS used fewer buckets as the distribution became

skewed. In the uniform case the percentage of buckets used is

around 63.1% - 63.500. This collaborates well with the expected

63.2% derived earlier. It is slightly higher here due to the

uneven partitioning of bucket intervals as a result of the

median selection and distribution expressions. Interestingly,

the percentage of buckets with at least 2 items did not vary

greatly, whereas the percentage of buckets with at least one

item varied between 16% to 64% throughout the entire series of
experiments.

Table 2.3 lists the run times observed for DPS(mdrg). TheI

greatest difference was observed for the skewed exponential

case, as would be expected. The other distributions were

fairly consistent.
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Table 2. OPS (mdrg) Experiments

Table 2.1

Largest Bucket Sizes

Uniform Normal Poisson ExponentialAv . -Wax . Avg -- Rx . Avg. Max. Av . Max.

500 4.4 5 7.2 8 6.8 8 9.4 12
1000 5.4 6 8.? 11 7.8 9 12.6 14
5000 6.? 7 9.8 11 9.4 10 17.4 19

10000 6.4 8 9.8 11 10.? 13 18.6 21
20000 6.4 7 10.0 11 10.6 12 21.4 23
30000 7.4 8 10.2 11 10.8 11 23.0 24

Table 2.2

% of Filled Buckets (First Pass)

Uniform Normal Poisson Exponential

500 63.84 26.32 49.68 26.80 49.48 28.08 40.20 22.76
1000 63.70 26.38 48.82 27.00 50.00 27.74 33.74 20.68
5000 63.48 26.33 46.24 27.10 45.16 27.72 30.05 19.42
10000 63.18 26.53 45.37 26.95 42.54 27.33 27.85 18.34
20000 63.28 26.33 45.10 26.98 41.68 27.21 25.99 17.44
30000 63.43 26.38 44.58 26.92 41.63 27.11 24.30 16.64

Table 2.3

Run Times (millisecs)

Uniform Normal Poisson Exponential

500 103.65 104.44 104.33 108.22
1000 201.54 208.90 208.55 223.38
5000 1036.80 1043.37 1045.45 1160.49
10000 2051.62 2085.85 2095.75 2369.29
20000 4144.05 4170.01 4195.50 4825.32
30000 6222.61 6247.89 6362.22 7159.07
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Tables 3.1-3.3 illustrate observations for OPS which

employs the Floyd-Rivest expected time 1.5n exact median

selection algorithm. It would be expected that while the

overall efficiency might improve, there would be a certain

amount of overhead in run times associated with the median

selection.

Overall these tables demonstrate the same characteristics

Tables 2.1-2.3 did. There were two major differences to be

noted. Table 3.2 shows that while there was a tendency for the

algorithm to distribute items less efficiently for skewed

distributions, the Poisson data was slightly more efficient

than the normal data. This is because Poisson generated more

buckets with exactly size 1, and fewer with at, least 2, than

the normal case.

The other observation to be made is found in Table 3.3.

For small input sizes, DPS(median) performed better for the

skewed distributions than for the uniform cases. This is

mostly due to fewer buckets that need to be handled for skewed

data. As a result, the algorithm runs slightly better.

Better run times for the normal distribution over the

uniform distribution were not observed, as they were in

[DO8O78a].

In Tables 4.1-4.3, data for the Ranking Method is

presented. A concern for this method is that it performs

consistently through the various distributions.

5-70

f



Table 3. OPS(median) Experiments

Table 3.1

Largest Bucket Sizes

Uniform Normal Poisson Exoonential
Avg. Max. Avg. Max. Max. Avg. Max.

500 4.6 5 7.; 9 7.2 9 8.8 11
1000 5.6 6 8.0 9 7.8 10 11.6 14
5000 6.2 7 10.0 11 10.0 12 15.0 17
10000 6.6 7 10.0 12 12.0 14 17.6 21
20000 6.8 7 10.4 12 13.8 15 19.8 22
30000 7.2 9 10.6 11 12.2 14 21.8 27

Table 3.2

% of Filled Buckets (First Pass)

Uniform Normal Poisson Exponential
%>.1 %>.2 L%>=1 %>=2 j i-2 ___

500 63.24 26.52 50.56 26.96 53.76 25.96 52.88 24.92
1000 63.54 26.48 48.82 27.24 54.32 26.66 49.38 24.14
5000 63.30 26.33 46.25 27.01 51.87 25.68 46.46 23.05

10000 63.31 26.31 45.40 26.96 50.27 25.43 45.76 22.74
20000 63.42 26.37 45.17 26.85 49.80 25.30 44.88 22.14
30000 63.34 26.44 44.58 26.90 49.74 25.10 44.06 21.64

Table 3.3

Run Times (millisecs)

Uniform Normal Poisson Exponential

500 145.16 134.40 133.66 139.74
1000 257.47 257.58 254.11 270.08
5000 1232.72 1241.65 1240.33 1296.61

10000 2439.84 2454.41 2494.27 2652.15
20000 4823.61 4847.84 4927.75 5368.40
30000 7210.15 7246.58 7338.22 8171.92
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Table 4.1 conforms well to this expectation. The bucket

sizes did not vary greatly in the Exponential cases as compared

to the OPS programs. Table 4.2 more vividly shows that the

algorithm is behaving consistently. For each distribution, the

percentages remained fairly 'constant. The percentage of

buckets with at least one item came very close to the predicted

63.2%. Table 4.3 illustrates that the run times also behave

very' consistently. There is very little run time variance

through distributions. Overall it can be concluded that the

Ranking Method is a valid Adaptive Method for BPS and deserves

further consideration.

Last in this series are Tables 5.1-5.3 for the Cumulative

Distribution Function Method. It can easily be seen in these

tables how well the algorithm performs across distributions.

Each run performs equally well regardless of skewness. This

strongly supports the theory that the sample Cumulative

Distribution Function effectively transforms an unknown

distribution into a uniform distribution.

The next three tables, 6.1-6.3, show the number of second

level passes using recursion that were needed for each

experiment. Uniform cases are not listed because none of the

experiments ever recursed to the second level. It should also

be noted that none of the experiments ever recursed to the

third level. Two passes on a bucket always sufficed to do the

sorting.
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Table 4. Ranking Experiments

Table 4.1

Largest Bucket Sizes

Uniform Normal Poisson Exponential
Avg. 'Max. Aj.x. .. g x.

500 4.2 5 5.0 6 5.4 6 4.6 5
1000 6.0 7 6.2 7 5.8 7 7.0 10
5000 6.8 8 8.6 12 9.8 13 9.4 13

10000 6.6 7 9.4 13 12.6 15 10.6 17
20000 7.0 8 10.2 11 14.6 17 13.6 21
30000 7.2 8 10.2 11 15.4 17 14.2 23

Table 4.2

% of Filled Buckets (First Pass)

Uniform Normal Poisson Exponential
%>.2 %a %>-2 %> >-2j

500 63.64 26.68 64.1? 25.20 61.88 26.04 63.16 26.88
1000 63.78 25.52 62.26 25.96 62.02 26.86 62.48 25.76
5000 62.57 26.34 61.70 26.20 61.55 26.28 62.02 26.27

10000 62.36 26.48 61.28 26.15 61.20 26.17 61.53 26.2?20000 62.49 26.43 61.16 26.29 61.08 26.18 61.61 26.1730000 62.49 26.40 60.94 26.40 61.2? 26.05 61.51 26.18

Table 4.3

Run Times (millisecs)

Uniform Normal Poisson Exponential

500 257.96 257.94 ?56.20 258.33
1000 428.78 427.58 425.91 428.30
5000 1789.90 1785.12 1784.10 1788.02
10000 3485.41 3479.50 3483.73 3487.98
20000 6857.82 6869.38 6879.54 6889.47
30000 10277.25 10251.06 10273.79 10294.71
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Table 5. COF Experiments

Table 5.1

Largest Bucket Sizes

Uniform Normal Poisson Exponential
Av9. Max. Av.g. Max. Avg. Max.

500 4.6 6 4.6 5 5.6 7 4.8 5
1000 5.6 7 5.6 7 5.2 6 5.2 6
5000 6.8 7 6.4 7 6.6 7 6.4 8
10000 6.8 8 6.8 7 6.4 7 6.6 7
20000 7.0 7 7.8 9 7.4 8 7.4 8
30000 7.4 8 7.4 9 8.0 10 8.0 9

Table 5.2

% of Filled Buckets (First Pass)

Uniform Normal Poisson Exponential% > -__I-- % >= % >=l_ % >= % >=IT % >.2 % >.I % >=2

500 63.92 26.60 64.36 25.92 62.60 26.00 63.80 26.24
1000 63.32 26.66 63.08 26.08 62.08 27.00 63.02 26.30
5000 62.61 26.20 62.43 26.42 62.21 26.54 62.23 26.34
10000 62.43 26.17 62.30 26.46 62.25 26.49 62.08 26.59
20000 62.35 26.30 62.29 26.38 62.13 26.62 62.02 26.76
30000 62.50 26.27 62.09 26.60 62.08 26.62 61.89 26.74

Table 5.3

Run Times (millisecs)

Uniform Normal Poisson Exponential

500 127.37 127.53 127.50 127.46
S 1000 234.27 233.86 233.70 233.93

5000 1085.52 1083.71 1084.46 1084.25
10000 2148.87 2145.85 2148.11 2147.49
20000 4274.07 4265.47 4274.10 4272.52
30000 6398.65 6378.67 6399.72 6398.81

5-74



A couple of observations can be made about the nature of

the data presented in these tables. The number of second level

passes is a good indication of how much work an algorithm is

doing. The fewer passes, the less work being performed. The

number of second level passes is a direct result of how well

the data was distributed in the first pass. The results of

these tables compare well with the run times observed in Tables

7.0-10.0.

As expected, the number of second level passes increased

within an algorithm as the data became more skewed. Another

observation is that Ranking needed only a small number of

passes, and CDF did not use a second level of recursion except

in one experiment! In this respect, COF far outperformed the

other algorithms. Again, this further supports the theory of

the Cumulative Distribution Function acting as a uniform

transformation. This is true to a lesser extent for the

Ranking algorithm.

The next four series of tables present how the algorithms

performed in any one distribution. These are especially

helpful on showing how the algorithms are competing against one

another.

The first three tables, 7.1-7.3, show the Uniform case.

As can be seen in 7.1 and 7.?, all algorithms appear to be

performing equally well with respect to the uniform case.

However, Table 7.3 shows the first large discrimination between

the methods. The second column of figures in these run times
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Table 6. Number of Second Level Recursions

Table 6.1

Normal

BPS mdrg DPS median Ranking COF
Avg. Max. A Max. Avg.Max. Avg.Max.

500 0 0 0 0 0 0 0 0
1000 .2 1 0 0 0 0 0 0
5000 1.? 2 1.0 2 .2 1 0 0
10000 1.4 4 1.0 3 .4 1 0 0
20000 2.2 5 2.0 3 1.8 5 0 0
30000 2.0 3 3.4 5 1.4 3 0 0

Table 6.2

Poisson

SPS mdr PS median Ranking COF
Av . ax . Max__. Avg . Max . Avg .- M ax .

500 0 0 0 0 0 0 0 0
1000 0 0 .2 1 0 0 0 0
5000 .6 1 1.? 3 .6 1 0 0
10000 1.8 4 7.6 13 1.8 3 0 0
20000 3.0 7 15.8 25 4.6 7 0 0
30000 4.6 7 24.4 36 6.0 13 .2 1

Table 6.3

Exponential

BPS md BPS median Ranking CDF
-aii. K Mx. A 1ax.

500 1.? 3 1.2 3 0 0 0 0
1000 7.2 14 2.4 5 .? 1 0 0
5000 69.6 92 27.0 43 .8 3 0 0
10000 171.2 258 74.6 113 2.6 9 0 01
20000 431.4 519 195.2 237 6.6 23 0 0
30000 763.0 786 351.6 363 11.8 31 0 0
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represent the percentage improvement of DPS(mdrg) over the

given algorithm. For example, a 1.19 means that DPS(mdrg) runs

19% faster than the given algorithm in that experiment. The

conclusion to be reached from Table 7.3 is that as the sample

gets larger, OPS(mdrg) is about 16% faster than DPS(median),

65% faster than Ranking, and 3% faster than COF. The Uniform

experiment times are represented graphically in Figure IV.2.

(Since the Normal and Poisson experiments have relatively the

same proportions as Uniform, as seen in Tables 8 and 9, this

graph would be similar in those distributions as well.)

The reason for these time differences can be explained in

the overhead associated with each method as compared to

DPS(mdrg). Formulas can be fit to the run times to approximate

what the constants of proportionality are. These expressions

yield times in microseconds, and fit better as the sample size

increases.

Time (microseconds) Space

DPS(mdrg) 207N 2N

COF 207N + 5.6N + 22600 2N + 3M

DPS(median) 207N + 31.6N + 52000 2N + N

Ranking 207N + 132N + 96255 2N + M + m

N - # items, M - # cells, m - sample size

COF Overhead: Sample frequency, line fits, and

larger partitioning expression

OPS Overhead: Median selection

Ranking Overhead: Quicksort, Binary search, and

complex partitioning expression
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Table 7. Uniform Experiments

Table 7.1

Largest Bucket Sizes

OPS mdrg OPS median Ranking CDF
____ Avg. Max. Avg. Max. A v. Max.

500 4.4 5 4.6 5 4.? 5 4.6 6
1000 5.4 6 5.6 6 6.0 7 5.6 7
5000 6.2 7 6.2 7 6.8 8 6.8 7

10000 6.4 8 6.6 7 6.6 7 6.8 8
20000 6.4 7 6.8 7 7.0 8 7.0 7
30000 7.4 8 7.2 9 7.2 8 7.4 8

Table 7.2

% of Filled Buckets (First Pass)

DPS mdrg DPS median Ranking COF
>- >2 %>=1 %>=2 %Fj =j=>1 >=

500 63.84 26.3? 63.24 26.52 63.64 26.68 63.9? 26.60
1000 63.70 26.38 63.54 ?6.48 63.78 ?5.5? 63.3? 26.66
5000 63.48 26.33 63.30 26.33 62.57 26.34 62.61 26.20
10000 63.18 26.53 63.31 26.31 62.36 26.48 62.43 26.17
20000 63.?8 26.33 63.4? 26.37 62.49 26.43 62.35 26.30
30000 63.43 26.38 63.34 26.44 62.49 26.40 62.50 26.27

Table 7.3

Run Times (millisecs)

DPS mdr 9 OPS median Rankin CDF
Dmed Rankin COF
U--d- g DUmdrg D md-rg

500 103.65 145.16 1.40 257.96 2.49 127.37 1.23
1000 201.54 257.47 1.28 428.78 2.18 234.27 1.16
5000 1036.80 1232.72 1.19 1789.90 1.73 1085.52 1.05

10000 2051.62 2439.84 1.16 3485.41 1.70 2148.87 1.05
20000 4144.05 4823.61 1.16 6857.82 1.66 4274.07 1.03
30000 6222.61 7210.15 1.16 10277.25 1.65 6398.65 1.03
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Figure IV.2
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It is here where the importance of constants of proportionality

in orders of magnitude is truly appreciated. Although the

overhead for Ranking is very high due to the binary searching

and initial sorting, only about an estimated 20% can be saved

on the run time if a smaller sample size and 15 sampling cells

are used.

It now becomes interesting to see what happens as the data

becomes more skewed. Tables 8.1-8.3 describe the Normal case.

Table 8.1 shows that the adaptive methods have smaller bucket

sizes. Table 8.? illustrates how efficiently the adaptive

methods distribute the items for buckets with at least 1 item.

The efficiency is better by roughly 15%. Table 8.3 shows that

the run times are in the same proportion as they were for the

uniform case.

Tables 9.1-9.3 illustrate the. Poisson experiments. The

results here are much like those of the Normal experiments and

the same conclusions can be reached.

Tables 10.1-10.3 list the results of the experiments with

an Exponential distribution. Table 10.1 shows that the

adaptive methods outperform the OPS methods, and Table 10.2

shows that the adaptive methods distribute items much more

efficiently. However, the major conclusion to be reached is in

Table 10.3. For input sizes greater than about 2500, COF

outperforms the DPS(mdrg) algorithm. For 20000 to 30000 items,

it runs about 12% better. Figure IV.3 illustrates the data in

Table 10.3.
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Table 8. Normal Experiments

Table 8.1

Largest Bucket SizesC

DPSnid DPS median Ranking COF
Avg. Max. ____ax. __.-Mx.

500 7.2 8 7.2 9 5.0 6 4.6 51000 8.? 11 8.0 9 6.2 7 5.6 75000 9.8 11 10.0 11 8.6 12 6.4 710000 9.8 11 10.0 12 9.4 13 6.8 720000 10.0 11 10.4 1? 10.? 11 7.8 930000 10.? 11 10.6 11 10.? 11 7.4 9

Table 8.2

of Filled Buckets (First Pass)

DPS mdr DPS median Rank COF

500 49.68 26.80 50.56 26.96 64.12 25.20 64.36 25.921000 48.82 27.00 48.8? 27.24 62.26 25.96 63.08 26.085000"46.24 27.10 46.25 27.01 61.70 26.20 62.43 26.4210000 45.37 26.95 45.40 26.96 61.28 26.15 62.30 26.4620000 45.10 26.98 45.17 26.85 61.16 26.29 62.29 26.3830000 44.58 26.9? 44.58 26.90 60.94 26.40 62.09 26.60

Table 8.3

Run Times (millisecs)

OPS mdrg OPS median R COF
Dmed Rankin CDF
m-d 9 0r Dm- g

500 104.44 134.40 1.29 257.94 2.47 127.53 1.221000 208.90 257.58 1.23 427.58 ?.05 233.86 1.125000 1043.37 1241.65 1.19 1785.12 o1.71 1083.71 1.0410000 2085.85 2454.41 1.18 3479.50 1.67 2145.85 1.03
20000 4170.01 4847.84 1.16 6869.38 1.65 4265.47 1.0230000 6247.89 7246.58 1.16 10251.06 1.64 6378.67 1.02
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Table 9. Poisson Experiments

Table 9.1

DPS mdrg DPS median RanIing CDF
Avg. Max. Avg. Max. Avg. Max. Avq7ax.

500 6.8 8 7.2 9 5.4 6 5.6 7
1000 7.8 9 7.8 10 5.8 7 5.2 6
5000 9.4 10 10.0 12 9.8 13 6.6 7
10000 10.2 13 12.0 14 12.6 15 6.4 7

20000 10.6 12 13.8 15 14.6 17 7.4 8
30000 10.8 11 12.2 14 15.4 17 8.0 10

Table 9.2

% of Filled Buckets (First Pass)

OPS mdrI OPS median Ranking CDF
% > = 2 _9>=I %>=2 %>=1 L>=2 %>=1 > 2

500 49.48 28.08 53.76 25.96 61.88 26.04 62.60 26.00
1000 50.00 27.74 54.32 26.66 62.02 26.86 62.08 27.00
5000 45.16 27.72 51.87 25.68 61.55 26.28 62.21 26.54
10000 42.54 27.33 50.27 25.43 61.20 26.17 62.25 26.49
20000 41.68 27.21 49.80 25.30 61.08 26.18 62.13 26.62
30000 41.63 27.11 49.74 25.10 61.22 26.05 62.08 26.62

Table 9.3

Run Times (millisecs)

DPS mdrg DPS median Ranking COF
Dmed Ranking COF
mdrq Dmdrg Dmdrg

500 104.33 133.66 1.28 256.20 2.46 127.50 1.22
1000 208.55 254.11 1.22 425.91 2.04 233.70 1.12
5000 1045.45 1240.33 1.19 1784.10 1.71 1084.46 1.04

10000 2095.75 2494.27 1.19 3483.73 1.66 2148.11 1.02

20000 4195.50 4927.75 1.17 6879.54 1.64 4274.10 1.02
30000 6362.22 7338.22 1.15 10273.89 1.61 6399.72 1.006
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Table 10. Exponential Experiments

Table 10.1

Largest Bucket Sizgs

DPS mdrq OPS median Rankin CDF
a Ma Max. Avg--Rax

500 9.4 12 8.8 11 4.6 5 4.3 5

1000 12.6 14 11.6 14 7.0 10 5.2 6

5000 17.4 19 15.0 17 9.4 13 6.4 8

10000 18.6 21 17.6 21 10.6 17 6.6 7

20000 21.4 23 19.8 22 13.6 21 7.4 8

30000 23.0 24 21.8 27 14.2 23 8.0 9

Table 10.2

% of Filled Buckets (First Pass)

DPS mdrg OPS median Rankin COF

500 40.20 22.76 52.88 24.92 63.16 26.88 63.80 26.24

1000 33.74 20.68 49.38 24.14 62.48 25.76 63.02 26.30

5000 30.05 19.42 46.46 23.05 62.02 26.27 62.23 26.34

10000 27.85 18.34 45.76 22.74 61.53 26.22 62.08 26.59

20000 25.99 17.44 44.88 22.14 61.61 26.17 62.02 26.76

30000 24.30 16.64 44.06 21.64 61.51 26.18 61.89 26.74

Table 10.3

OPS mdrg DPS median Ranking COF
Dmed Ranking COF Dmd

mdiFig Dmdrg Di-'g CDF

500 108.22 139.74 1.29 258.33 2.39 127.46 1.18

1000 223.38 270.08 1.21 428.30 1.92 233.93 1.05

5000 1160.49 1296.61 1.12 1788.02 1.54 1084.25 .93 1.07

10000 2369.29 2652.15 1.12 3487.98 1.47 2147.49 .91 1.10

20000 4825.32 5368.40 1.11 6889.47 1.43 4272.52 .89 1.13

30000 7159.07 8171.92 1.14 10294.71 1 44 6398.81 .89 1.12
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Pigure IV.3
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Tables 11.1-11.3 demonstrate how well the algorithm run

against DPS(mdrg) across the distributions. It is interesting

to note the consistency of the percentages across

distributions. Tables 11.1-11.3 are illustrated graphically in

Figure IV.4.

IV.? Summary of Conclusions

The reader may have noticed that up to now experiments

have dealt with various types of distributions, and little has

been done with the worst case. An expo.nential distribution

exemplifies a typical bad case of data for OPS. Where the

worst case for Quicksort is a realistic sorted set of items,

the worst case for OPS is an impractical set of factorials

[00B079]. This is by no means a typical case. For these

reasons this author feels that worst case experimentation is

justified only as a curiosity factor, rather than of any

practical importance. The adaptive methods have more than

proved themselves on the skewed distributions given to them as

input.

It was pointed out at the beginning of this paper that an

algorithm should be measured on a number of criteria. Thus

far, the algorithms have been thoroughly analyzed for

theoretical and practical time and space considerations.

Additionally, they should be easily understood, implemented,

and maintained. OPS(median) has a very complex median

selection algorithm, and Ranking has a lengthy initial

Qulcksort and a cumbersome binary search to execute. The CDF

algorithm, on the other hand, is quite simple minded in its
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Table 11. Run Time Percentages Time Alg.
Time Dmdrg

These tables indicate how much longer it takes an algorithm to
run for the given distribution as compared to DPS mdrg on that
distribution.

Table 11.1

OPS median

DPSmdrg DPSmdrg DPSmdrg DPSmdrg
Uniform Normal Normal.Poisson Poisson Exp. Exp.

500 103.65 104.44 1.29 104.33 1.28 108.22 1.29
1000 201.54 208.90 1.23 208.55 1.22 223.38 1.21
5000 1036.80 1043.37 1.19 1045.45 1.19 1160.49 1.12

10000 2051.62 2085.85 1.18 2095.75 1.19 2369.29 1.12
20000 4144.05 4170.01 1.16 4195.50 1.17 4825.32 1.11
30000 6222.61 6247.89 1.16 6362.22 1.15 7159.07 1.14

Table 11.2

Ranking

Normal Poisson Exponential

500 2.47 2.46 2.39
1000 2.05 2.04 1.92
5000 1.71 1.71 1.54
10000 1.67 1.66 1.47
20000 1.65 1.64 1.43
30000 1.64 1.61 1.44

Table 11.3

COF

Normal Poisson Exponential

500 1.22 1.22 1.18
1000 1.12 1.12 1.05
5000 1.04 1.04 .93 (1.07)
10000 1.03 1.02 .91 (1.10)
20000 1.02 1.02 .89 (1.13)
30000 1.02 1.006 .89 (1.12) 4
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Figure IV.4
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approach, which makes it readily comprehensible. This

simplicity lends itself to competitive run times with DPS(mdrg).

For larger input sizes, the COF algorithm runs to within

4% of DPS(mdrg), and actually outperforms it by 12% in

exponential and more skewed cases. Smaller inputs take only a

fraction of a second to sort, so overhead is not an important

consideration here. When using CDF, we are guaranteed that any

unknown distribution will be sorted as quickly and efficiently

as though it were a uniform case, and the sorting can be done

about as cheaply as the fastest available DPS method.

Therefore, there is little to lose, and possibly something to

gain, by implementing the Cumulative Distribution Function

Adaptive Method for Distributive Partitioning Sorting. It is

well worth using.

S8
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CHAPTER V

CONSIDERATIONS FOR THE FUTURE

With the Cumulative Distribution Function adaptation,

Distributive Partitioning Sorting is an extremely efficient and

valuable sorting technique. It easily outperforms Quicksort

and other "fast" sorting algorithms. But there remain a number

of aspects in which OPS may be even further improved, and a

number of areas in which it has future implications.

V.1 Modifications

Some modifications can be suggested to improve the

efficiency of DPS. If DPS(mdrg) or DPS(median) is used knowing

that the data will typically be symmetrically distributed, then

it is not necessary to select a median. All that is needed is

to partition the range into n buckets and distribute the

items. The median is so close to the mean for these

distributions that it is not worth finding or using. If one

insists on choosing a median quickly, it would be sufficient to

choose the median of a small sample of the data, rather than

the entire data set.

CDFDPS does not choose a median. But like the other

methods, it has an Insertionsort cutoff. For these experiments

Insertionsort was used for bucket sizes of 9 or less. Since

about 63.2 % of the buckets are used, it would be practical to

use some fraction of the partitions. This is because many
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buckets with one item can be combined, and still come under the

cutoff. The same basic idea was suggested in [KNUT73,

00B0793. It would be worthwhile to sep if there is an optimum

number of buckets to use given the cutoff. This could result

in a substantial space savings.

V.2 Implications

As is the case with other sorting algorithms, there is

some question as to whether DPS is practical for machines other

than large mainframes. On microcomputers, if large inputs are

used, the answer is, of course, no, due to memory size

limitations and slow processing speeds. But with the recent

advances in mass storage and CPU speeds on micros, it might not

be long before large scale programs become reality on small

computers.

There are practical space problems on minicomputers as

well, which are largely a function of the amount of available

space and the load on the machine. Theoretically there is no

reason why DPS could not be implemented on a mini. In reality,

in addition to OPS's space overhead, there would be many system

and user dependent factors affecting its performance. At some

point it may become advantageous to resort to an external sort

should system resources become too limited.

It would be very worthwhile to examine adapting OPS to

handle alphanumeric keys. This would be of great practical

.1 concern for the data processing community, since most sorting

in reality is done on name fields of one type or another. The
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main concern would be to keep BPS fast, simple, and competitive

with other algorithms.

It is fitting here to cite previous work in the

applications of the idea of distributive partitioning. Just as

the basic idea of partitioning in Quicksort was used by Floyd

for selection, so Allison and Noga have suggested using

distributive partitioning in selection [ALLI80). Van der Nat

has suggested adapting distributive partitioning in binary

merging and merge sorting applications [VAN79, VAN80]. And, as

mentioned earlier, Meijer and Akl have developed a Hybrid of

OPS which uses a CDF for known distributions [HEIJ80].

CDFDPS could be generalized to sort n-dimensioned arrays.

A COF in n-dimensions is defined to be:

Gx(xlx 2 ,...,x n)P(X Xl, X 2 Xn < X n )

Finding cumulative frequency probabilities is easily expanded

to n-dimensions. .ince this function can be considered

monotonic increasing in n-dimensions, the resulting

transformation from one n-dimensional spac@ to another will be

uniform. It should be relatively easy to implement CDFOPS for

multi-dimensioned arrays. j
Perh-Aps another way to use the basic idea of COF

distributive partitioning is in hashing applications. An item j

can be hashed using distributive partitioning for fast lookup

and retrieval in databases. Collisions could be handled in any

number of ways described in database theory. The hope is that*1 a very fast and simple mechanism can be developed for information
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storage and retrieval systems. The hashing process would of

course be 0OM)

V.3 In Conclusion ...

Distributive Partitioning Sorting has only recently begun

to receive the attention it deserves. With the Cumulative

Distribution Function adaptation, it can be made to handle all

types of unknown distributions equally well. The space

considerations can also be minimized as can the run t imes .

Since OPS is practical, fast, and easy to implement, serious

consideration should be given to it by the programming

community as a viable and cost effective sorting method.
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Part 6
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EXPECTED BEHAVIOR OF APPROXIMATION ALGORITHMS
FOR THE EUCLIDEAN TRAVELING SALESMAN PROBLEM

Abstract

The behavior of several approximation algorithms for the

traveling salesman problem is considered when the points are

randomly allocated in the Euclidean plane according to some

known distribution. The expected length of the tour constructed

by an algorithm is estimated from tie order statistics of the

distribution of the distance between points. The approximation

methods considered include nearest neighbor, arbitrary insert,

nearest and cheapest insert, and two methods based on finding

the minimal spanning tree (including Christofides' algorithm).

For the distribution examined, all of the approximations are

shown to produce a tour whose expected length is O(Ai), where n

is the number of points, and at most a small constant factor

(ranging from 25.7% to 87.5%) from optimal.
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EXPECTED BEHAVIOR OF APPROXIMATION ALGORITHMS
FOR THE EUCLIDEAN TRAVELING SALESMAN PROBLEM

In this paper, several simple polynomial time appro)ximation

algorithms for the Traveling Salesman Problem (TSP) are analyzed

for their expected performance when the points are distributed in

two-dimensional Euclidean space. This version of the TSP may be

briefly stated as follows.

Given a set of points in a plane, find the minimum
length tour going through each point exactly once..

This problem has a long and interesting history, and many

attempts at its solution are surveyed in Bellmore and Nemhauser

[2]. Recently, Garey, Graham, and Johnson [7] and Papadimitriou

[15) have independently shown that the Euclidean TSP is

NP-complete, and thus it appears that an exact solution to the

problem for more than several points is computationally

infeasible. As a result, much recent interest has centered

around the behavior of approximation algorithms, or heuristics,

for this problem.

Rosenkrantz, Stearns, and Lewis [17) have investigated the

worst case performance of a number of approximation methods for

the TSP. The tenor of their work is to examine a specific

algorithm and bound the ratio of the length of the approximate

tour it produces to that of the optimal tour. They also attempt

to construct graphs for which the algorithm performs nearly as

badly as this ratio might imply. The best known guaranteed

approximation algorithm for the TSP is due to Christofides [3],

and always finds a tour whose length is within a factor of 11

times the optimal solution.
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Worst case performance analysis Provides a warning to users

of an algorithm how far from the optimum the method might

deviate. Unfortunately, results of this nature provide little

or no insight as to the typical behavior of the method. The

algorithm with the best worst case ratio does not necessarily

have the best expected one. The expected performance of an
algorithm is usually more difficult to ascertain. One has to

make assumptions about the distributions of inputs, and

realistic assumptions are often mathematically intractable.

Even the introduction of slightly complex heuristics can lead to

probabilistic dependencies that can be extremely difficult to

analyze.

In this paper, we investigate the expected length of the

solution to an n-point TSP when the points are randomly

allocated in the plane according to some given probability

distribution. Using techniques from order statistics, we examine

the foTlowing approximation algorithms:

*nearest neighbor method

*arbitrary insert method

nearest and cheapest insert methods

*minimal spanning tree (MST) based method

Chrisofides' method

All of these methods are found to produce a tour whose expected

length is O(v'r). We also bound the expected tour length from
below to show that the algorithms are optimal to within at most

a small constant factor. These results tend to confirm
A experimental work in actually using the algorithms (9]. Further-
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more, the results are significant in that the worst case

performances of some of the algorithms studied can vary greatly,

as shown by Re,.enkrantz, et al [17]. The nearest and cheapest

insert and MST-based methods always produce a tour whose length

is at most twice that of the optimum, but the best known upper

bounds on the worst case ratio for the nearest neighbor and

arbitrary insert methods grow as log n. In fact, it has been

further shown that this logarithmic divergence is unavoidable

for the nearest neighbor algorithm.

Some prior related work has been done on the problem studied

in this paper. Employing techniques quite different from those

used here, Morozinskii (14) has shown that the expected length

of a tour constructed by the arbitrary insert method is 0(V-n)

and within a factor of 4 of a lower bound on the expected tour

length. His result is quite general in the sense that it does

not assume any specific distribution of points, but only some

weak conditions about the way they are generated. Although our

results apply only to the specific distribution considered, our

bounds yield more concrete information about the actual tour

length. Furthermore, the techniques used in our derivations are

general and could be applied to other distributions.

In two frequently cited papers, Karp [10,11] describes an

algorithm based on dividing the points- into a number of small

regions, constructing an optimum tour within each region, and

then joining the subtours. Although this algorithm is not

guaranteed to find a tour within any specified range of the

optimum, Karp states that the method solves the problem to within
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1 € "almost everywhere" for every c>O. The success of Karp's

algorithm depends on a theorem (with a long and difficult proof)

by Beardwood, Halton, and Hammersley [1]. This result states

that the length of the optimal tour through n points in a

bounded plane region of area A is "almost always" proportional

to A7A for sufficiently large n. Weide [18] has recently pointed

out that some confusion exists when interpreting and comparing

such results due to differences in (1) the probabilistic models

under which they are derived, and (2) the measures of convergence

used. The results of Karp and 8eardwood, et al are proved within

what Weide calls the mincremental model" -- i.e., the n-th

instance of the problem differs only incrementally from the

previous one. Our results are proved for the "independent

model, in which the n-th problem in the sequence is totally

independent of previous ones. Weide has shown that results for

the independent model are stronger in the sense that they

subsume results for the incremental model, while the reverse

does not always hold. Another difficulty with the results of

Karp and Beardwood, et al is that they hold only in the limit as

the number of points tends to infinity, and hence the results do

not speak about moderate (and the usually interesting) values of

n. Our results are derived in a framework that is not plagued

by this difficulty.
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1. Distribution of Points

Our objective is to derive theoretical bounds on the expected

lengths of tours constructed by various approximation algorithms

for the TSP when the point.s are distributed randomly in

two-dimensional Euclidean space. In this paper, we shall assume

that the Cartesian coordinates (x,y) of each point are generated

from a normal distribution with mean 0 and variance a2, denoted

N(Oa 2 ). This distribution obeys the statistical assumptions

made in previous work. It was selected to obtain concrete

quantitative results, and because it was quite tractable to

analyze. Although we deal here with the normal distribution,

the analytic techniques themselves are applicable to any

distribution of points that depends only on the origin and

decreases monotonically outside a circle of sufficiently large

radius.

One of the important statistical techniques that we shall use

in our analysis comes from the distribution of order statistics

[5,6,8]. Let xl,...,xm be a random sample of size m from

some probability density function f(x). We can find the

distribution functions of the order statistics yl,...,ym,

where the- yi's are the xi's arranged in order of magnitude

so that yl<y2 ... y*. From the joint distribution of the

Yi's, other interesting and useful distributions -- including

those of the maximum, the minimum, and the range -- may be

derived. Specifically, the probability function gi of the

i-th smallest element of {yj} is given by

g1(y) dy m i_,') (F(y)]J11 C1-F(y) m- I f(y) dy

6-5
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where F gives the cumulative density function of the Yi's. In

order to apply this technique to the TSP, it is necessary that

(1) the points should be generated independently from the

distribution, and (2) the distribution of the length of the edge

connecting any two random points should be known. We now derive

this distribution.

Lemma 1: The distribution function of the distance between

two points selected at random from N(O,a 2 ) is

F(t) - 1 - e

and the expected distance between two points is E(t) -

Proof: Let (x1 ,yi) and (x2 ,y2 ) be the coordinates

of two randomly selected points. Then, the distance z between

them is

z - !(xl-x 2 )Z + (yl-y2)

Crame'r (5] proves that if

w-

11

where the Ct are generated from N(O,g 2 ), the density of w is

given by

2wn
- 1 e -

2 a

2 nI n r(n/2)

where r denotes the gamma function. Since (xl-x 2 ) and

(yl-y 2 ) are differences of normal distributions, they are

generated by N(0,2a 2 ). Substituting n.2, we obtain
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f(z) - 2,? z

and hence

t
F(t) - Prob(z<t) - f o f(z) dz

t z2/4a2  t Z2 /4a2

- f z e dz fo -d(e )

-1 -e 2/4a2

Furthermore, the expected distance between two random points is

E(t) - '0 t f(t) dt
0

1 t - t 2 14o 2

t t 2  dt /7 am .e.d.
0

6-
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2. Nearest Neighbor Method

The nearest neighbor algorithm for the TSP may be briefly

described as follows.

One of the nodes is arbitrarily selected as the starting
point. Among all the nodes not yet visited, the one that isclosest to the current node is selected as the next to be
visited. After all the nodes have been visited, return to
the starting point.

Rosenkrantz, et al (17] have shown that this algorithm always

constructs an n-point tour those length is at most log2 n of the

optimal, and that there exist graphs for which its tour is 1 log n

times the optimal. We now derive the expected path length when

the coordinates of the points are selected from N(O,0 2 ).

Theorem 2: The expected length of the tour for n points

constructed by the nearest neighbor method, TNN(n), is bounded

from above by

TNN(n) S 2vr'-a / + O(v' W)

Proof: Suppose we start at an arbitrary node A. The

expected length of the first edge in the tour is the minimum of

the n-I edges joining A to all other points (see Figure 1).

~n-1 points

n-1 edges

A

Figure 1. n-I edges emanate from an arbitrary point A.
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The lengths of these edges follow the distribution F given by

Lemma 1 and are independent. By order statistics, the

distribution of g1 , the length of the shortest of these n-i

edges, is given by

g1 (t) dt - (n-l) [1-F(t)]n- 2 f(t) dt

Thus, the expected length L1 of the first edge is

E(L1 ) . t gl(t) dt
-'"t(n-l) [1-F(t)] n - 2 f(t) dt

S tl-d[l-F(t)] n - 1 )

Integrating by parts, we get

E(L1 ) - l -1-F(t)]n-1 dt

-(n-1)t
2/4a2

e •dt

- -1

Similarly, the expected lenjch of the i-th edge Li added

to the tour is the minimum of the n-i edges from the current

node to the remaining unvisited points. Hence, by the

properties of order statistics and Lemma 1,

E(L)O [I-F(t)] n-i dt fvil'7T

The closing edge of the tour joins the last node added to the

starting point. Denoting its length by Lce, we obtain for the

total tour length

n-i
TN(n) - E(Lt) + E(Lce)

i-1

n-i V
& = wT+ E(Lce)

n-I VW1 + (

6-9
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-n dx + E(Lc)
0 + 2 V ' x , ' ( c e )

Observe that E(Lce) is at most equal to the expected value

of the longest edge joining the starting point A to any of the

other n-i points (see Figure 1). By order statistics, the

distribution gn-1 of the longest of n-1 edges is given by

gn-1(t) dt - (n-i) F(t)n - 1 f(t) dt

and its expected value by

E(gn- 1 ) - t gn-1(t) dt < E(Lce).

Gumbel [8, Sect. 6.3.8] shows that this quantity asymptotically

becomes

E(gn- 1 ) - 2a 4n(n-1) + 0IvTnn-1)

where y is Euler's constant, ? - .577. q • d

To find the expected length of Lce, some authors [18] have

made the simplifying assumption that all points except the one

closest to the starting point are equally likely to be selected

as the last point added to the tour. To our knowledge, the

validity of this assumption has never been formally proven, and

there exists experimental evidence to the contrary [9]. If the

assumption holds, the expected length of the closing edge can be

estimated by the average distance from the starting point to all

points other than its nearest neighbor. As the number of points

increases, this quantity approaches the expected distance

between any two points, which is 17 by Lemma 1. This distance,

although independent of the number of points n, does not

significantly alter the length of tour bound we have derived.

6-10
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3. Arbitrary Insert Method

The arbitrary insert algorithm for the TSP" perates as follows.

1. Choose any node A as the starting point, and another
arbitrary point B as the second node to be visited.
Construct the tour going from A to B ana back.

2. Randomly choose one of the nodes P not yet visited as
the next point to be inserted. Find the node Q already
in the tour which is closest to P. From the two nodes
adjacent to Q in the tour, select the one R such that

dpQ * dpR - dQR

is minimal, where dij denotes the distance between
points i and J. Add edges nPQ and lM to, and delete 1
from, the tour. Repeat this step until all points are
included.

Rosenkrantz, et al (17] have shown that this algorithm always

produces a tour whose length is within a factor of 1og2 n of

the optimal, but it is an open question whether this logarithmic

growth can actually be realized. Using a complicated proof,

Morozinskii (14] has shown that this algorithm constructs a tour

whose expected length is O(/n) and is within a factor of 4 from

the optimal for a general class of probability distributions

which includes the normal.

Theorem 3a: The expected length of the tour for n points

constructed by the arbitrary insert method, TAI(n), is bounded

from above by

TAI(n) 4v' a AM

Proof: Suppose we have i points in the tour, where i > 2.

The (+l)-st point P is chosen at random from the remaining set

of n-I points (see Figure 2).
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n-i points

i edges

i points in the tour

Figure 2. P is the i-th point to be inserted in the tour.

The expected value of the minimum distance Di from P to the i

points in the tour is

E(D1 ) . j0  (1-F(t)] dt . G vT

We must now compute the cost of adding point P to the tour.

Consider the situation illustrated in Figure 3.

^p

/ % By the Triangle Inequality,

dpQ + dQR > dpR

Q-'R 2dpQ + dQR > dpQ + dpR

2dpQ > dpQ dpR - dQR

- cost of inserting P

Figure 3. To insert P, delete edge

and add edges M and 7L

Hence, the expected cost of inserting P is at most twice

E(D1 ), and the total tour length can be bounded from above by

n-1

TAl(n) < 2E(D 1 ) + 2E(Lie)
i=2

6-12
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where E(Lie) i- s the expected length of the random

starting edge in step 1 of the algorithm (see Lemma 1).

Therefore,

n-i t;g
TAI(n) < 2 ii2 / + 2

n-i 4,
-2 r

4 o g.e.d.

The bound of Theorem 3a is quite conservative. since it uses

the Triangle Inequality as the basis for estimating the cost of

inserting the new point P. The Triangle Inequality actually

describes the worst case cost of inserting P. Let us examine

each of the three lengths involved in the computation of this

cost, dpQ + dpR - dQR , more closely.

By applying order statistics, we determined the expected

value of dpQ to be E(0i), the expected minimum distance from

P to the I points already in the tour. Since point Q appears at

some random spot in the I-point tour being modified, we would

expect dQR to be an average length edge in this partial tour.

Thus, if we let E(L1 ) denote the expected length of the

1-point tour during the construction, then the expected value of

dQR is E(Lt)/i.

Finally, we consider dpR. By the operation of the

algorithm, P is known to be closer to Q than R and so dPR f
dpQ. By the Triangle Inequality, dpR < dpQ + dQR. Just

where dpR falls in this range is unknown, but a reasonable

assumption might be that the distance dpR is distributed uniformly

6-13.



between the two limits. This would imply that the expected value of

dpR 1s dpQ + . dQR , and that the expected cost of inserting P is

)+E(Lij E ( L i )( D  E(Li)
E(dPQ+dPR-dQR) E(D)+E() i 2i

Since we have no formal basis for the validity of this

assumption, we will refer to it as the "reasonable insertion

hypothesis".

Theorem 3b: Under the reasonable insertion hypothesis,

TAI(n) is bounded from above by

TAI(n) < 2 "-s a rT + 0(1)

Proof: From the above discussion, the expected length

E(Lt 1,) of the (i+l)-point tour is equal to the expected

length of the i-point tour plus the expected cost of inserting

the (1+l)-st point P. A recurrence relation describing this

fact is

E(Lt+ 1 ) - E(Lt) + E(dpQ+ dpR- dQR)

21-1
- - E(L ) + ?E(Dt)

We are interested in solving this recurrence for

TAI(n).E(Ln). This relation can be solved using the method

of summing factors, described in Lueker [12). To do so, we need

an appropriate boundary condition which, from Step 1 of the

algorithm, is E(L 2),1 2 .

A general recurrence relation of the form

xti+1 "ftx + gi.

has solution

6-14



n-2 n-i n-I
x n i! I 3 )gi + gni + n H f )Xa

n a j-i+i I -a

where xa denotes the value of x at the boundary condition.

Hence, the solution to our recurrence i.s

n-2 n-i n-1
E(L n) - 1 ( II 43..)2E(D i) + 2E(Dn_ 1) + ( n)E(L 2 )i 2 j-i+i i.2

n-2 n-12jl)ai + rr n-i 1-
- 2 vo 1 11 z-j-- TI(i= Jil /I /n I-2

Applying the inequality

- 2i1
11 -Ic -- s

we obtain

E(Ln) c 2v r" n-_

The desired result follows from the following estimate of the

SUm.

n-2 / n-2I / S f /M -d x
1-2 i

n-2
<~ [+-Idx

- 1 + 2vn' - 4 q.e.d.

61
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4. Nea-rest and Cheapest Insert Methods

The nearest insert algorithm operates similiarly to the

arbitrary insert method except that the next point P to be

inserted into the tour, instead of being chosen arbitrarily, is

selected to be the point not yet in the tour which is closest to

any node already in the tour. (The second point selected is the

starting point's nearest neighbor.) Rosenkrantz, et al [17]

have shown that this method always produces a tour whose length

is at most twice the optimal, and that there exist graphs for

which it performs virtually this badly.

Theorem 4a: The expected length of the tour for n points

constructed by the nearest insert method, TNI(n), is bounded

from above by

TNI(n) < 4(2 - /2) 4i;T a-i

Proof: Consider the case when we have i points in the

tour. To get the (i+l)-st point, we take the minimum of n-i

edges connecting each of the i nodes in the tour to all of the

remaining n-i nodes (see Figure 4).

remaining n-i points

i sets of n-i edges

i points in the tour

Figure 4. i sets of n-i edges Join the f points
in the tour with the n-i points not yet ivterted.
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Observe that the expected minimum in I sets of n-i edges is

less than or equal to the expected minimum of the n-i edges

emanating from one of the i points already in the tour. Hence,

by Lemma 1 and order statistics, the expected distance from the

point P to be inserted to any of the i points already in the

tour is upper bounded by ,7'IA:n

E(min. of i sets of n-i edges) < E(min. of n-i random edges)

Let L' denote the length of the tour constructed through the

first F7]points, and L" be the addition to the length by the re-

maining[ Jpoints. Then,

TNI(n) - E(L') + E(L")

Given the expected length of the i-th edge added to the tour,

our analysis proceeds as in the proof of Theorem 3a. We find

-1 -1 n__ .2 - 1 _
E(L') < 2(°i) 2 [21' i 1 n-i

in i 71 i=+1 A-

Now let the tour contain more than F71points. Then finding

the minimum of i sets of n-i edges drawn f-nm the nodes in the

tour to the remaining nodes is equivalent to finding the minimum

of n-I sets of i edges drawn from the nodes not in the tour to

the nodes already in the tour (see Figure 4). As before,

' E(mln. of n-I sets of I edges) i E(min. of i random edges)

t and

n-i n-i

E ( L " ) < ? E ( D i ) 2 -"
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Hence,

TNI(n) - E(L') + E(L")

n-1 1 n

= 4(?_ '/)T -- I.e.d.

Again, the bound of Theorem 3a is very conservative since it

is based upon using the Triangle Inequality for bounding from

above the cost of inserting each new point. We now wish to

investigate the improvement In tour length under the reasonable

insertion hypothesis introduced in the previous section.

Theorem 4b: Under the reasonable insertion hypothesis,

TNi(n) is bounded from above by

TNI(n) !. Iv , + 0(1)

Proof: As in the proof of Theorem 3b, the reasonable

Insertion hypothesis gitves rise to the recurrence relation

21-1E(LI I ) - - E(L i ) + 2E(D i )

This time, the recurrence must be solved twice.

The expected length of the tour through the first F 1 points is

E(L') - 1E-2 (J-Oi) )E(DT _1) + ( '2 / )

where E(O) and the boundary condition E(L2 ) are given by

E(Di) < <  __ and E(L2 ) -

6-18
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Using the inequality

m

t 21-1
ink AF~ m

We find that

E(LI) :1 2r2 r. =n-_To 4/war

- 2 + ~ +, (n-1f(n-?)T

Ir2

The first of the three terms will dominate, and a good estimate

of this term may be obtained as follows.

L fj /4 dx
2 2 x

- (n+1) an&1 + - tan
1 ]

(n+1) - - - =  (n+1)

since . and tan 1/-? both approach rapidly. Hence,

w-2 1E (L')C.*j lt + 0()1

For the second half of the tour, we must again solve the

recurrence.

n n-1 n-1 -

TNN(n)mE(Lnl)2_I + ?E(D 21 )E(L

where E(Ll m E(LI), which we Just-estimated, serves as the

boundary condition. Applying our usual inequality for!l (2j-1)/?J

and remembering that E(0i)< "wa,"T in the second half of the

tour, we obtain

6-19
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E(Ln)(~+ 2~ ~ + 2y/we + ir-2 1 a-r /n+1 +

Next, we bound the summation in the first term from above by an

integral.

nj2V/ Jfn/N dx

< JT 2 1 dx

I (n-1) + (2-/T)/ n-

The theorem immediately follows by adding together the terms

growing as /n- in the sum for E(Ln). g.e.d.

The cheapest insert algorithm operates somewhat like the

nearest insert method. Again, the next point P to be inserted is

chosen to be the node not yet in the tour which is closest to any

node already in the tour. Point P is inserted by finding the

edge 7T already in the tour such that dp + dPR-dQR is minimized,

and deleting this edge while adding Vq and VT. Hence, this

algorithm inserts P at the least costly place. Rosenkrantz,

et al [173 have shown that the worst case behavior of this

method is the same as that of the nearest insert algorithm.

Since the tour constructed by the cheapest insert method cannot

be longer than that constructed by the nearest insert method,

the upper bounds of Theorems 4a and 4b also apply to cheapest

insert.

6-20
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S.. ST - Based Method

The minimal spanning tree of a set of n points consists of

the n-1 edges connecting all the points in such a way that the

total length of the edges is minimized. Lewis and Papadlmitriou

£13] and others have shown how to convert the MST into a TSP

tour whose length is at most twice that of the optimal tour.

Christofides (3] has further refined this method to produce a TSP

1tour whose length is at most 12 times the optimum,to be described

in the next section.

We now proceed to explore the relationship between the length

of the optimal TSP tour, denoted IOPTI , and the length of the

MST, denoted I4ST I . Since the optimal TSP tour can be converted

into a spanning tree (not necessarily the minimal one) by

removing one edge, we have

IMSI < IOPTI

Furthermore, j
IOPTI < 2 IMSTI

and this occurs when all the points are collinear. The validity

of this latter claim will be clarified in what follows.

The tour building technique described in Lewis and

Papadimitrlou is based on the observation that the MST can be

converted into a tour visiting all the points by traversing each

edge twice and returning to the origin, as illustrated in Figure

Sa. This twice-around-the-tree tour is then converted into a

legitimate TSP tour by shortcutting any previously visited

points and proceeding directly to the next unvisited point, as

6-21



shown in Figure 5b. It is easy to see that the length of the

TSP tour produced is. bounded above by twice the length of the

MST.

2 PP2 -- -- -"4 P2P
P 7P

PP

65 6

a) MST and tour with length - 2IMSTI. b) TSP tour based on the MST.

Figure 5.

We now proceed to bound the expected length of the MST from

above using Prim's algorithm [16]. This method for constructing

the exact MST may be briefly described as follows.

Arbitrarily choose any node as the starting point, and
include it in the tree. From among all the nodes not
yet in the tree, select the one that is closest to any
tree node, and add this node and the corresponding edge
to the tree. Continue this procedure until all nodes
are included.

Theorem 5: The expected length of the MST for n points,

LMST(n), is bounded from above by

LMST(n) ?(?-V7) / q r .

Proof: The situation when the i-th edge is added is

identical to that for the nearest insert algorithm. To get the

length Li of the i-th edge added, we take the minimum of the

n-i edges connecting each of the i nodes already in the tree to

the remaining n-i points (see Figure 6). As in the proof of

* 1} 6-22
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remaining n-i points

i sets of-n-i edges
or

n-i sets of i edges

i points in MST

Figure 6. i(n-i) edges join the i points in the
MST with the n-i points still to be added.

Theorem 4a, for 1<1 i 27 we have

E(L1) E(min. of i sets of n-i edges)

E(min. of n-i random edges)

We may obtain a better bound for the remaining nodes added by

considering the directions of the edges to be reversed. Again,

as in Theorem 4a,

E(L1 ) -E(mln. of n-i sets of i edges)

5E(min. of i random edges)

for +~ 1 < i <n-1. Hence,

LMST(n) - E(L1) + I ;
1. i-i /TT

n-i
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We note that the expected length of the MST can be bounded

from below by

LMST(n) > r a

using the technique to be described in the proof of Theorem 7a.

This result follows from the observation that the MST contains

n-1 edges, each of whose expected length is at least as great as

the expected distance from a point to its hearest neighbor.

Hence, the bound of Theorem 5 is quite tight since ?(?-/T)=

1.17.

The MST-based algorithm described above produces a TSP tour

whose expected length, TMSTB(n), can be bounded from above by

TMSTB(n) <. 2LMST(n) <_ 4(?-&Yr,"a /n---T

In fact, we should expect the length of the TSP tour constructed

to be significantly less due to the shortcutting procedure.

Unfortunately, the geometric and statistical techniques

necessary to obtain a good estimate of this improvement have not

yet been identified.

6-24
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6. Christofides' Method

The MST-based algorithm described in the previous section

can be regarded as consisting of four basic steps.

1. Construct the minimal spanning tree.

2. Convert the MST into a multigraph consisting of two
edges for each edge in the MST (e.g., the dotted edges
in Figure 5a).

3. Construct an Eulerian tour of the multigraph produced
in Step 2. An Eulerian tour traverses each of the
edges in a graph exactly once, returning to the origin.

4. Convert the Eulerian tour of Step 3 into a legitimate
TSP tour by shortcutting edges to previously visited
points.

It is well-known that a connected. multigraph contains an

Eulerian tour if and only if the degree of each of its vertices

is even. Such a graph is called an Eulerian multigraph.

Clearly, the procedure of Step 2 ensures that this condition

will be met.

Christofides [3] has discovered another way of converting

the original MST into a TSP tour yielding an even better

performance guarantee on the length of the path constructed.

His method is the same as above except that Step 2 is changed to

the following.

21. Construct the Eulerian mrltigraph consisting of all the
MST edges plus the edges in the minimal weight matching
on the verticesof odd degree in the MST.

A matching on a set of 2n vertices V is a partition of V into m

disjoint 2-element sets. Associated with the matching is the

set of edges P for each 2-element set {P,Q}. The minimal weight

matching on V is the one in which the total sum of its

associated edge lengths is smallest.
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The operation of Step 2' is illustrated in Figure 7. Since

the matching adds one new edge incident with each vertex of odd

degree in the MST, all of the vertices in the multigraph are of

even degree and the existence of an Eulerian tour is guaranteed.

Furthermore, the perfect matching must exist since the number of

vertices of odd degree in the MST is even, according to another

well-known result from graph theory.

a) MST, odd degree vertices circled. b) Minimal odd vertex matching added.

Figure 7.

We now explore the relationship between the lengths of

Christofides' tour (denoted I C4 I), the minimal odd matching

(denoted IMOMI ), the minimal spanning tree ( INSTJ ), and the

optimal TSP tour ( IOPTI). Since the length of the Euclidean

tour constructed in Step 3 equals IMSTI + IMOMI, we have

ICMI < IMSTI IMOMI
We observed in Section 5 that i4STI < JOPTI. It also turns out

that 11OI011 1 IOPTI. This occurs because the optimal TSP can be

converted into a tour T through the vertices of odd degree in the

mST by shortcutting any edges passing through the even vertices.
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Clearly, ITI <IOPTI. Furthermore, T contains two matchings on

the odd vertices, formed by taking every other edge, and the

length of the shorter of these cannot exceed 
1IOPTI. (See

Figure 8.) We conclude that

CMI < ' JOPTI

Cornuejols and Nemhauser (4] have further shown that this bound

is tight by exhibiting instances of the problem for which the

algorithm performs this badly.

Figure 8. Optimal TSP tour with odd degree vertices in MST circled.
Shortcut tour through these vertices contains two matchings.

The expected length of the tour produced by Christofides.'

algorithm can be bounded above bY the sum of the expected

lengths of the MST and MOM. Since we already considered the

length of the MST in Section 5, we turn our attention to the

problem of determining the expected length of the matching. The I

number of points participating in the matching varies from one

problem instance to another. All n points participate in the

worst case, although we would anticipate this situation to arise

6-27
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only rarely. Unfortunately, we do not know of any techniques

for determining the expected number of points in the matching,

and this remains an interesting open question.

Another difficulty arises in estimatinq the expected length

of the minimal matching. All of the algorithms studied so far

adhere to the "greedy" design paradigm. That is, they make a

series of decisions on how to proceed based on finding the

smallest edge with a certain property. Order statistics lends

itself nicely to examining the expected behavior of such

procedures. However, we know of no such greedy algorithm for

the optimal matching. Instead, we shall bound its expected

length from above by analyzing a greedy matching heuristic which

does not, in general, produce the best match. This method

operates as follows.

Randomly select a point and pair it with its -nearest
neighbor. From the remaining n-2 points, randomly select
one and pair it with the nearest unmatched point. Repeat
the procedure n/? times, when all points will be paired.

Theorem 6: The expected length of the matching for n points

constructed by the greedy matching heuristic, LGM(n), is

bounded from above by

LGM(n) < -/ av' T

Proof: At the i-th iteration of the algorithm, the point P

selected randomly is paired with one of the n-?1l+ remaining

points. From order statistics and Lemma 1, the shortest of the

n-2i+l edges joining P to the unpaired points has expected length

E(L) "

6-2
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Ience, the expected length of the entire matching is given by

n/? nl? A'" '#
LGM(n) i E(Li) iI W_ 1- - + I

n/ ,/x +f1 n-2i +1 1

- v n = q.e.d.

An obvious improvement on the greedy method is to pick the

shortest edge among any of the remaining points at each step.

Because of statistical dependencies between the edges, we cannot

say anything significant about this technique. However, we can

content ourselves with the following interesting fact. Although

the length of the matching produced by our simple greedy

heuristic can be quite bad, its expected value is within a

factor of two of the expected length of the minimal matching.

To see this, observe that the expected length of the minimal

matching on n points, L1M(n), can be bounded below by

L 1M(n) VW n/i 1

since the matching contains - edges, each of whose expected length

is as great as the expected distance from a point to its nearest

neighbor. A general discussion of such lower bounding

techniques for the TSP follows in Section 7.

Suppose cn points participate in the matching, where the

fraction c is such that 0 < c < 1. Then, as a corollary to

Theorem 6, the expected length of the TSP tour constructed by
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Christofides' algorithm, TCM(n), can be bounded above by

TCM(n) 5. LMST(n) + LGM(cn)

In the worst case c-1, yielding a bound of

T CM ( n) < ( 5-22-') /w a Vn -

Under the reasonable assumption that half of the points are of

odd degree in the MST, c-4 and

TCM(n) 5 4

As in Section 5, a better estimate of the savings resulting from

the shortcutting procedure would enable us to sharpen these

bounds.

63
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7. Lower Bound on Optimal Tour Length

Theorem 7a: The expected length of the optimal tour through

n points, TOPT(n), is bounded below by

ToPT(n) > V Jn

Proof: Consider an arbitrary node in the graph. The

expected distance to its nearest neighbor is given by the

expected' length of the minimum of the n-1 edges connecting the

node to all the other nodes in the graph. Using order

statistics, we have already seen

E(distance to nearest neighbor) -

Since the expected length of each of the n edges in the optimal

tour is at least the expected distance from a vertex to its

nearest neighbor, we have

TOPT(n) > n r n q.e.d.

A better lower bound can be derived by noting that exactly

two edges are incident with each point in any tour. In the proof

of Theorem 7a, we observed only that the expected length of the

shorter of these edges is at least as great as the expected
.. 9

distance from a point to its nearest neighbor. But the longer

of the two edges emanating from a point has expected length at

least equal to the expected distance from a point to its second

nearest neighbor. Using this observation, we now derive a better

lower bound.

Theorem 7b: The expected length of the optimal tour through

n points, TOPT(n), is bounded below by

TOPT(n) -
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Proof: Let 01 and 02 denote the distance from a point P

to its nearest and second nearest neighbors, respectively.

Attributing half of the length of any tour edge to each of its

endpoints, we have

TOPT(n) 2 n (- E(Di ) + 1 E(02 )J

As in Theorem 7a, E(0 1 ) - / o/ An--'-'. The distribution 92 of

the second shortest of the n-1 edges incident with a point P is

given by order statistics to be

g2 (t)dt - (n-1)(n-2)F(t)[1-F(t)]n-
3 f(t)dt

and its expected value is

E(D2 ) - ft g2 (t)dt

1 tet 2 /4a 2 d

n-2) -t 2/4a t2/4an-3 2 t /a
t t(n-1)(n-) - - e 2a 2 t dt

a 0-1)(n-2). [rt2e-(n-2)t
2 /4a~dt 2 t2e-(n-1)tz/4od

2a z  10 t f ed]

. (-11n-2.Y' [4a2 )312_ ,4 2)31/

2a A~n-2 n[-I24 32

V =- n7 + / 1 ]

3/;

Hence,

a V q.e.d.
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This states that the optimal tour, no matter how it is con-

structed, wIll have an expected length of at least o 0 A. This

is significant in that all of the algorithms discussed above

produce a tour whose length is within a small constant factor of

this lower bound. This factor ranges from a low of 25.7% for the

nearest insert algorithm under the reasonable insertion

hypothesis to a high of 87.5% for the MST-based method. As

mentioned in Section 4, the cheapest insert method performs at

least as well as nearest insert.

Using different techniques, Morozenskii (14] has shown that

the asymptotic expected length of an optimal tour is proportional

to r/n for any probability density which depends solely on the

distance from the origin and is monotonic outside some circle of

sufficiently large radius, and not merely for a normal

distribution. Morozenskli's derivation is based upon the

expected distance from a point to its nearest neighbor, rather

than both this distance and that of a point's second nearest

neighbor. A related result by Beardwood, et al (1] states that

the length of the shortest closed path through n points in a

bounded plane region of area A is "almost always" proportional j
to / for sufficiently large n.
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. ummary and Conclusions

The famous traveling salesman problem of operations research

is NP-complete, even when the Points are restricted to the

Eu'clidean plane (7,15]. Because of this apparent computational

intractability, one must resort to the use of approximation

algorithms which, in general, produce suboptimal tours. Previous

research has focused on the worst case behavior of such

approximations [17,3,A.4J. Such results tend to be overTy

pessimistic since worst case data seldom, if ever, is encountered

in practice. Furthermore, one may still expect most reasonable

approximation methods to perform about equally well on random.

inputs, even though the worst case performances of the

algorithms may vary greatly. Experience in working with several

approximations tends to confirm this hypothesis [9). The primary

motivation for this work is to Provide a theoretical basis for

explaining this intuition and experience.

In this paper, we applied the methods of order statistics to

estimate the expected lengths of the tours produced by several

approximation schemes for the Euclidean TSP. To do zo, we

selected one specific distribution of points for extensive study.

A primary reason. for choosing the' two-dimensional normal

distribution was that it proved to be mathematically tractable.

Furthermore, this distribution conforms to all of the statistical

assumptions made in prior' investigations, and the 0(4) tours

produced are also in line with previous work [1,14). Hopefully,

the distribution is typical of this class so that one might

expect somewhat similar results to hold had a different choice

I. been made.
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Our principal conclusion is that for the distribution

chosen, all of the approximation algorithms studied produce a

tour whose expected length is within a small constant factor of

optimal. One line of possible future research would be to

investigate the variance in path length associated with the

algorithms, again using order statistics. A low variance would

tend to enforce our belief in the algorithm's ability to produce

generally good tours, whereas a high variance would make us more

skeptical of the method. Another possible line of investigation

would be to extend the results to other specific distributions

or, better yet, to general classes of distributions obeying

certain statistical assumptions.

0 Perhaps the most important contribution of this work is to

show how order statistics can be applied to say significant

things about the expected behavior of heuristics for the

Euclidean TSP. There is no reason why these techniques could

not be applied to other computational problems, as well. One way

of coping with the apparent intractability of NP-complete

problems is to devise fast procedures which approximate the

optimal solution. To date, most research has focused on

deriving worst case performance guarantees for these methods,I
while very little is known about their expected performance.

Since many of these approximations can be characterized as

agreedy. algorithms (i.e., they minimize or maximize some

criterion at each step), they would be good candidates for the

application of order statistics provided it is possible to

characterize reasonably the distribution of inputs. Further

explorations of this type could be most useful and interesting.

6-35



__ __ _ I__ __ I_ I I I -; _ IEE I | v I'

RWferences

[1] J. Beardwood, J. H. Hialton, and J. M. Hammersley, "The
Shortest Path Through Many Points", Proc. Cambridge Phil.
Soc., Vol. 55, No. 4 (Oct. 1959), pp. 299-327.

[2) N. Bellmore and G. L. Nemhauser, "The Traveling Salesman
Problem: A Survey", Oper. Res., Vol. 16, No. 3 (May 1968),
pp. 538-558.

[3) N. Christofides, "Worst Case Analysis of a New Heuristic
for the Traveling Salesman Problem", Technical Report,
Graduate School of Industrial Administration,
Carnegie-Mellon Univ. (1976).

[4] G. Cornuejols and G. L. Nemhauser, "Tight Bounds for
Christofides' Traveling Salesman Heuristic", Math.Programming, Vol. 14, No. 1 (Jan. 1978), pp. 116-121.

[5] H. Cramer, Mathematical Methods of Statistics. Princeton
Univ. Press, Princeton, NJ, 1958.

[6] H. A. David, Order Statistics. John Wiley and Sons, New
York, 1970.

(7] M. R. G-arey, R. L. Graham, and 0. S. Johnson, "Some
NP-Complete Geometric Problems", Proc. 8th Annual ACM Symp.
on Theory of Computing (1976), pp. IU-zz.

(8] E. J. Gumbel, Statistics of Extremes. Columbia-Univ. Press,
New York, 1958.

[9] P. V. Kamat, "Expected Behavior of Approximation Algorithms
for the Euclidean Traveling Salesman Problem", M.S. Thesis,
Univ. of Rhode Island (Aug. 1978).

(10) R. M. Karp, "The Probabilistic Analysis of Some
Combinatorial Search Algorithms", in Algorithms and
Complexity: New Directions and Recent Results, J. F.Trau
(ca.), Academic Press, New York, 19/5, pp. 1-19.

[11] R. M. Karp, "Probabilistic Analysis of Partitioning
Algorithms for the Traveling Salesman Problem in the
Plane", Math. Oper. Res., Vol. 2, No. 3 (Aug. 1977), pp.
209-224.

[12] G. S. Leuker, "Some Techniques for Solving Recurrences",
Comput. Surv., Vol 12, No. 4 (Dec. 1980), pp. 419-436.

[13] H. R. Lewis and C. H. Papadimltriou, "The Efficiency of
Algorithms", Set. Amer., Vol. 238, No. 1 (Jan. 1968), pp.
96-109.

6-36

I m mIII__I - I I



[14] L. Yu. Mrorozenskii, 06n The Asymptotic Length of a
Commercial Traveler's Path When Towns are Randomly
Allocated", Theory Prob. Applications, Vol. 19, No. 4 (Dec.
1974), pp. 7 -uui.

(15) C. H. Papadimitriou, *The Euclidean Traveling Salesman
Problem is NP-Completem, Theoret. Comput. Sci., Vol. 4, No.
3 (1977), pp. 237-244.

(16] R. C. Prim, "Shortest Connection Networks and Some
Generalizations", Bell Sys. Tech. J., Vol. 36, No. 6 (Nov.
1957), pp. 1389-1401.

[17) D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, "An
Analysis of Several Heuristics for the Traveling Salesman
Problem", SIAM J. Comput., Vol. 6, No. 3 (Sept. 1977), pp.
563-581.

(18) B. W. Weide, "Statistical Methods in Algorithm Design and
Analysis", Ph.D. Thesis, Carnegie-Mellon Univ. (Aug. 1978).

6

6-37 -:

I •I



ALGORITHMIC COMPLEXITY

Part 7

by

Leonard J. Bass

DATA BASE ACCESS METHODS

ABSTRACT

A survey is made of several different access methods for

both univariate and multivariate range queries. These

techniques include B-tree and extendible hashing as univariate

techniques and radix bit mapping and K-D-B trees as

multivariate techniques.

All techniques discussed are currently suitable for

practical use.
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DATA BASE ACCESS METHODS

As the requirements for accessing large data. bases have

grown, the techniques used in managing these accesses have

become more sophisticated. In this paper, several of these

techniques are surveyed. First we review K-ary and radix trees

which are utilized by the access methods discussed. Next we

discuss two different univariate access techniques, B-trees and

extendible hashing. Finally we present two multivariate access

methods: radix bit mapping and K-D-B trees. All of the

techniques discussed are currently suitable for practical use.

The problem we are discussing is the accessing of a data

base by the values of one or more of its variables. That is, a

large data file exists which contains records for many

variables and it is desired to retrieve the record(s) with the

specified values of certain variables. The forms of this

problem depend on the number of variables used to define the

records desired and whether these variables are defined

specifically (with a single value) or by a range of values.

More formally, if each record of the data base has

variables X1 , X2 , ..., Xs then there are four degrees of

generality for this problem.

1) For a fixed i and value v, locate all records with

XI  v (univariate match)

2) For a fixed i and u < v locate all records with

u < X, _ v (univariate range)

7-1
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3) For a set of variables Xi. ... X r r < s and a

corresponding set of values v1, ... vr locate all

records with (X1, ... P Xr (Vill ... 9V)

(multivariate match on r variables)

4) For a set of variables X0..$Xr r < s and two

corresponding sets of values u.i < vi i =1..,r

locate all records with ui :i x. .vi i ,.. r

(multivariate range on r variables)

On a typical computer system the central processor operates

about 1000 times faster than the associated input/output

processor. Since a data base resides on an external device

(generally a disk drive) the most important measure of a data

base accessing algorithm is the number of 1/0 requests that

must be satisfied to execute the algorithm.

Furthermore, data bases change over time, and these changes

are reflected in modification of data items. A modification is

a deletion followed by an insertion and another important

measure of an accessing algorithm is how well it adapts to

changes in the underlying data base.

Our focus, then, will be on the amount of 1/0 necessary to

access and modify a collection of records in a data base.

Not at ion

We are dealing with a data base of N distinct records, each

with its own physical record address. Within each record we

have s special variables which are to be used to access the

2K4 data base.
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For each query, we are given r < s pairs of values, u ,

ur and v, vr  and we are looking for those

records (XI, ..., Xr ) with ui  x i  vi  for 1 < i <

r. (Note that we are assuming that the variables in the data

base have been numbered in a certain order and any query must

be couched in terms of the first r of these variables. This is

certainly not true in practice but it simplified our notation

and, for the purposes of analysis any two variables are

interchangable).

Within the data base, for each pair of values ui , v. we
1

have M. records which satisfy condition u. < X. < v.

and, for r pairs of values (ui, vi), i = 1, ... r we have M

records which satisfy condition ui < Xi  vi for i = 1,

.. , r.

By choosing u i = vi we have the exact match problem and

by making ui < v i we have the range problem.

Trees

A node of a k-ary tree based on variable X (called the key)

consists of k values of x together with k pointers to other

nodes. j
If node n1 contains a pointer to node n 2

then a) nI is called a parent of n

b) n2 is called a child of n1

Descendent is defined in the obvious manner from child.

Any node which has no children is called a leaf node.

7-3
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A k-ary tree is a finite collection of nodes such that:

1) there is exactly one node (named the root) which is the

child of no other node.

2) Every node other than the root is the child of exactly

one node.

3) No node is a descendent of itself.

An ordered k-ary tree is a k-ary tree in which, for any

node, the k values of X are ordered x 1  x2  _ . - xk

and for non-leaf nodes, the k pointers PP .''' Pk are such

that xi < x' for every value x' in P. or any of its

descendents. I.E. xi provides a lower bound for any value in

any descendent.

We will only be dealing with ordered trees and will assume

the ordering without specific reference.

A k-ary tree provides a mechanism for searching the list of

values xI , . . ., xn  to locate a particular value y. The

algorithm pror --is as follows

0) Set P to be root node

1) Search node P with values xI , ... , xk of tree to

find i such xi  y < xi+ i, if no such i set i = k.

2) Retrieve node pi.

a) If node is not leaf then set P - pi and repeat

step 1.

b) If node is leaf then if y is in xI , ... , xn it

will be in node pi.

Figure I gives an example of a k-ary tree and a retrieval from

a k-ary tree.

7-
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Since we are concerned with 1/O requests, with appropriate

choice of k, retrieving a node requires exactly one read.

Searching for a value requires traversing the tree from the

root to a particular node and thus the worse case measure of

'the number of read requests is the length of the longest path

from the root to a leaf. (This is the height of the tree.)

The height of an ordered k-ary tree is minimized if the

tree is kept balanced as points are inserted into or deleted

from the tree.

In the applications we will1 make of trees several points

can be made.

1) We are assuming the existence of a data base and the

various types of trees will provide an access path to

the data base based on the v al1u es of variables. it

does no good to find a value efficiently using a tree

structure u nl1e ss we can subsequently locate the

associated data record. Thus, we will assume that the

values in the leaf nodes have associated with them the

appropriate -ecord number.

7) Our definitions allow the values at the higher level

nodes to either appear again at lower level nodes or to

have the retrieval algorithm terminate when it

successfully finds a value at a higher level. in our

applications all values from the data base will occur

at the leaves. An implication of requiring all of the

data values to occur at the leaves is that the v alIue s

at the non-leaf nodes need not be values from the data

7-5



AD-A1lS 814 RHODEISLAND UNIV KINGSTON DEPT OF COMPUTER SCIENCE -- ETC F/G Q/2
ALGORITHMIC COMPLEXITY. VOLUME 1I (U)
JUN 82 E A LAMAGNA, L J BASS, L A ANDERSON F3060?-7qC-On2I

UN LASFlED 81-161-VOL-2 RADC-TR-S2-152-VOL-2 NL4IIIIIIIIIIl

E9,e2

IIIIIIIIIIIII7



base. The values at the non-leaf nodes serve only to

discriminate between the values at the leaves. A type

of tree where only the first portion of a value is used

to discriminate is called a radix tree.

B-tree

The first access method we shall examine is the B-tree of

Bayer and McCreight (2). In this section we present the

univariate version of this structure. In subsequent sections

we present two different applications of B-trees to solve the

multivariate range searching problem.

A B -tree is an ordered k-ary tree where k chosen to be

the maximum number of items that can be read with one read

(kept in a single page in a virtual memory environment). In a+)
B -tree all of the xi, i = 1, k appear in the leaf nodes,

regardless of whether they also appear in a non-leaf node. I
+

The searching algorithm for a B tree we have already

given. We now give the algorithm for insertions and deletions

and then discuss these algorithms.

Insertion
+

To insert a new value y into an existing B tree, use the

following algorithm.

1) Search for y in tree and locate the leaf node which

would contain y if it were already in list.

2) Insert y into node.

3) If now are less than or equal to k values in node then

'exit.
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4) There are now k+1 entries in node. Split node into two

nodes, both with same number of elements (both k/2

if k is odd or one with (k+1)/2 and one with if k is

even). The two new nodes are such that if x is in node

A and y is in node B then x <y.

5) The new node must now be reflected in the parent of the

split. Retrieve parent, insert smallest value of node

B and pointer to node B in parent. Modify discriminant

within parent for A (if necessary).

6) Repeat steps 3-5 for new node.

Figure 2 gives an example of the splitting process.

Deletions

To delete a value y from an existing B tree use

following algorithm:

1) Locate value y in tree in leaf node P.

2) Delete y from node P.

3) If greater than or equal to k. values in P k-j1 if k isJ

odd) or P is a root then exit.

4) There are now k/2-1 entries in node. Choose sibl ing

(Q) of node with same parent. If node Q has more than

k/2 entries move one (either smallest or largest) entry

from Q to P. Reflect new discriminant values in parent

of Q and P and exit.

If node Q has k/2 entries then merge nodes Q and P into

node P and delete node Q.
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5) Retrieve parent of Q and call it P. Delete reference

to Q from P.,

Repeat steps 3-5.

It should be obvious from the insert ion/deletion algorithm that

no node (excluding root) will ever have fewer than k/2 items in

it. Thus the maximum possible height of the tree with N items

is lOgkl? N. Thus a retrieval will take at most logk/ 2 N

reads. It should also be obvious from the insertion algorithm

that at most one split can occur at each level of the tree.

Retrieval and splitting are the only IO operations required by

insertions. Thus at most 2 logk/2 N IO operations are

required for an insertion.

Deletions also require at most one merger per level. Thus,

deletions also can be done in O(logk/2 N) I/O operations.

The type of B tree we have presented maintains all of the

data items in the leaf. Thus to solve the range query in one

dimension it is only necessary to search for the lower bound of

the range and then traverse the tree until the upper bound is

reached. This takes at most lOgk/? N + z- reads where M is the

number of data items in the range.

Note that the solution to the range query retrieves the

values in increasing order of the key.
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Extendible Hashing

B-trees operate in logarithmic number of I/0 requests and

give the ability to retrieve records in order on the key being

searched. If it is not desired to retrieve records in key

order another univariate technique is available with a better

expected retrieval behavior (although not necessarily a better

insertion/deletion behavior).

This technique (extendible hashing (3)) is a combinatio of

radix trees and hashing - a well established technique for

randomized but repeatable access into a table. We assume a

general familiarity with hashing. A general introduction to

hashing is provided by Standish (5).

Hashing into a fixed size table (say of size n) consists of

two parts.

1) A randomizing function f such that if x is an arbitrary

key value and y < n the probability that f(x)-y is
1
In. (f distributes the keys uniformly from 1 to n).

2) If x~y and f(x)=f(y) and x is already in the table then

a method exists which will find a free cell to hold y.

This is called collision resolution.

Two problems exist with the standard hashing techniques.

These are

1) The table size, n, must be chosen a priori. Hashing

works well when no collisions occur. If n was chosen

too small for the particular set of data inserted into

n then no good remedy exists.,
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2) It is not easily possible to access the values from the

table in a specified order. Since f was chosen to be a

randomizing function, it cannot simultaneously maintain

a particular order of the keys. This is only a problem

if retrieving in key order is a requirement of the

particular application.

The algorithm we now present removes the first of these

problems and allows the table size to grow dynamically. The

basic idea behind the algorithm is to build a radix tree using

the hashing function as the search mechanism for the tree.

The algorithm assumes the existence of a randomizing

function f such that 1 < f'(x) < 2 where n is chosen so that

2 is the largest possible table size. n=32 is a typical

type of value.

At any point in time, there is a value d which reflects

essentially the table size. The first d bits of f(x) are used

as the radix with which to index into the hash table. Thus the

root of the radix tree is 2d entries long. The tree has only

one level, aside from the root.

The retrieval algorithm works as follows for a key x.

1) Calculate f(x).

2) Retrieve current depth, d, of the root. Use the first

d bits of f(x) to index into the root of the tree. The

value retrieved is a pointer to a leaf node which

contains x (if it is in the table).

3) Hash x into leaf using standard hashing and collision

resolution techniques.

7-10.
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Figure 3 gives an example of this type of tree with d-3.

This algorithm takes exactly two read -requests to retrieve

a value. The-first request reads in the correct portion of the

root (no requirement exists that the entire root be retrievable

with one read). The second read retrieves the leaf node with

the desired value. The correct portion of the leaf can be

retrieved directly from the first d bits of f(x) and thus no

searching need be done to find the pointer to the leaf.

Observe in Figure 3 that several locations in the root

point to the same leaf. This allows, for example, the doubling

in size of the root node without affectinig any of the leaf

nodes. Thus if d 1d 2 d3  is a 3 b it binary number with

pointer P, by setting d 1ad2 dO3 and d1d 2dl3 to both

have poir. - P we have increased d from 3 to 4, doubled the

size of the root and not affected thp leaf nodes.

The insertion algorithm fjr the extendible hashing

structure will now be presented.

To insert a value x into the extendible hashing structure:

1) Locate the leaf node for x by retrieval algorithm.f

2) If node is not full insert x by hashing and collision

resolution and exit.

3) If node is full and node is pointed to by several

places in root (this can be detected efficiently) then

split node into two nodes according to division in

parent node. Leave d unchanged.
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4) if node is full and is not pointed to by several places

in root then the s iz e of the root is doubled, by

incrementing d, each non-affected pointer in root is

replicated and then the node containing X is split into

two as in 3).

The deletion algorithm is similar and will be omitted.

As can be seen from the insertion algorithm the behavior of

the extendible hashing algorithm depends heavily upon the

uniformity of the function f. In the worst case the behavior

of the algorithm is linear in n but both analytic and

simulation results (3) indicate that the expected behavior of

the algorithm is somewhat better than that of B-trees.

Discussion

Both algorithms discussed provide efficient access to a set

of keys. B-trees are logarithmic in both the expected and the

worst cases. Ex~tendible hashing is the order of a constant in

the expected case for retrievals and apparently logarithmic in

insertions (based on timing charts and not analytic results).

Both provide for dynamic modification of the underlying

data base and respond well to modifications.

B-trees require at most Fi* logkJ 2 ni pages of disk storage

and allow for retrieval in the order of a key once the lower

bound has been found.

ii4
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Extendible hashing takes 2 page accesses for a retrieval

and requires at least n/k + log~n/k pages on the disk.

Extendible hashing also will not allow retrieval on key order

but only in f(key) order.

Multivariate Retrieval

We now turn to the m ,re general case of finding those

records such that if (uj, v.) j=1, ... , r are r ranges then

retrieve all records with u < x. < v. for j = 1, ... , r.

If r=? then this may be visualized geometrically by viewing

records in the data base on points in two space and

(Ul,V) and (u?,vs) as defining a rectangle in two

space. In this case we wish to retrieve all points that lie in

the rectangle. If r=3 we are in 3 space and are defining a

rectangular solid and in general we are defining a region in r

space.

The geometric interpretation will become useful in the

second algorithm presented which solves the problem in

r-space. The initial algorithm we present will solve this

problem by iterating on the range problem for each of the keys

and thus essentially solves the problem by projecting the

rectangle onto each of the coordinates in turn. This algorithm

has been implemented in a statistical data management system

available on mini computers (1).
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Assume all the records of the data base are numbered

1, .... n and assume that given 1 < i < n we can retrieve the

record easily. The algorithm we present maintains B-trees for

each of the r desired keys. Associated with each key is the

number of the record wich contains it.

The B-trees are maintained permanently on the disk. When

responding to a particular query a radix tree is created. This

radix tree contains the current set of records that satisfy the

query. The philosophy behind the construction of the radix

tree is to view the leaves of the tree as being N consecutive

bits. If record i satisfies the current query then bit i will

be on, otherwise it will be off.

Viewing this bit map as a radix tree both reduces the

memory required (under reasonable assumptions) and simplifies

the retrieval from the tree. Suppose each leaf can hold k
i

bits. Then to locate record i in the radix tree use Ik as

the radix and interrogate the bit numbered i mod k in the

appropriate leaf.

E.G. If k=1024 and we wish to indicate the presence of

record 18360 then turn on bit 952 in the leaf pointed to by the

17th pointer in the root.

Using a radix tree rather than a standard bit map

introduces one additional node (the root) and allows the

omission of any leaf not referenced by a particular query.

7-14
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If ?56 pointers can be kept in the root and each node

contains 256 x 16 bits then 106 records can be represented

with a tree of height two. Once the individual trees have been

constructed for each variable then they can be merged into a

tree which contains the desired subset. Figure 4 demonstrates

this process for one variable.

The algorithm for retrieving the desired subset for a

multivariate range query is

1) for each of the r keys (say j) construct the radix tree

that reflects those records with uj xj < vj.

2) Merge the r constructed radix trees by ANDing the

leaves together.

3) The resulting radix tree contains exactly the records

desired.

The difficulty of constructing the radix trees for a single

key depends upon the number of distinct pages referenced by the

range of values for that key, if the first d bits of the record

i
number are the same (where d is the length of /k in bits)

only one page is referenced, etc. If Pj pages are referenced

th
by the j key and M. are the number of distinct data

records in the jth range then the construction of the jth

prefix tree takes

IkI n + + Pj page references and the determination

of the appropriate subset takes

r 2M.
r lOgk/2 n + (k + Pj)

7-15
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Thus this algorithm works well if the projection on each

axis contains points that are clustered together in terms of

data base record number. It also works well if sufficient real

memory is available to hold the constructed prefix trees since

then no page faults would be generated.

Notice, however, that if r=1 and u1 = v1 and the keys

are unique that the construction of the prefix tree requires

one additional page reference beyond the B-tree retrieval. If

this page is permanently allocated in real memory then for the

case of a single unique identification variable this method

costs no additional input/output

Since this algorithm depends upon univariate B-trees, if

the data base is updated the individual B-trees respond to the

changes as already discussed.

Also, once a desired subset is defined we can retrieve the

records in the subset in the order of a particular key by

retrieving from the B-tree for that key and using the radix

tree to determine whether each record was in the desired subset.

Finally, since the data structures permanently maintained,

the B-trees, are univariate the only dependence upon more than

one variable is in response to a specific request. Thus, the

B-trees that are maintained are suitable for univariate

requests on any key or multivariate requests on any combination

of keys.
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K-D-B Trees

The final algorithm and data structure discussed provides

promise of a more efficient access for requests couched in

specified a priori terms of set of keys. This structure is a

generalization of B-trees themselves to multiple dimensions.

For simplicity we present the 2-dimensional case and the higher

dimensional structures are similar.

One dimensional B-trees can be viewed geometrically as

providing a partitioning of an axis with (roughly) an equal

number of points in each interval. The k adjacent partitions

are grouped into one partition at the next higher level to

provide the access path.

The K-D-B tree (4) is a generalization of this geometric

view to higher dimensions. In the 2-dimensional case instead

of partitioning a single axis into intervals as in one

dimension, we partition the plane into rectangles. At the

lowest level each rectangle has (roughly) the same number of

points. At higher levels, the access paths are provided by

grouping rectangles from lower levels into larger rectangles.

See figure 5 for a graphical representation of a 2-D-B tree.

Thus, a 2-dimensional range query defines a rectangle in

the plane and all rectangles in the 2-dimensional K-D-B tree

that overlap the desired region would be searched to retrieve

all the records that satisfy the query.
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If, in fact, all of the lowest level rectangles had roughly

the same number of points, this structure would guarantee a

logarithmic worst case behavior. The problem is that no

insertion and deletion strategies currently exist which

guarantee a minimum number of points in a rectangle.

This is most easily seen when dealing with deletions,

although a similar problem exists with insertions. Recall that

the deletion algorithm for one dimensional B-trees provided for

merging two adjacent intervals when both had less than k/?

points. This works because two adjacent intervals also define

an interval. When dealing with rectangles, however, this does

not work. If A and B are two adjacent rectangles then one edge

of A must be a portion of an edge of B (or vice versa). If the

overlapping edges are not identical then the merger of the two

rectangles is not a rectangle. Thus, when deleting points,

either the definition of the regions in terms of rectangles

must be abandoned or the merger of two sparsely filled

rectangles must he abandoned.

Robinson (4) advocates eliminating the merger step when

deleting which in the worst case could result in empty

rectangles. A similar problem results when doing insertions.

The mechanism for using K-D-B trees then is to build the

underlying data base first. Then build the K-D-B trees and use

ad hoc techniques to allow for such insertions and deletions as

may occur. Simulations show that the expected behavior in such

circumstances is very good.

7-18
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Comparison

Figure 6 gives a table which compares the four algorithms

we have surveyed. They are, compared from the point of view of

time to retrieve, time to update, and suitability for various

types of queries;.

If only univariate exact match queries are expected then

either B-trees or extendible hashing provide the best

responses. The choice between those two should be based on the

dynamic nature of the data base. If the data base is

relatively static (few insertions or deletions) then extendible

hashing is recommended. If the data base is highly dynamic

then B-trees are recommended. If univariate range queries are

expected as well as exact match, then B-trees are recommended.

If multivariate exact match queries are expected with

little a priori knowledge of which variables are involved then

either B-trees or extendible hashing may be used to create the

radix bit map. Again the choice is based on the dynamism of

the data base.

If multivariate exact match queries are expected for a

specific set of variables then a K-D-B tree could be

constructed for those variables if the data base is not very

dynamic.

If multivariate range queries are expected then the choice

is between K-D-B trees and B-trees with radix bit mapping. If

the underlying data base is not highly dynamic and the queries

are always in terms of the same variables then use a K-D-B tree

otherwise use the univariate B-trees with radix bit mapping.
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Root

First 3 bits of f(x) 00e th=30..

001

010

Oi[ j f W)=010 ....

100

1011L j f(x)= ....
110
11 1

Z-(x)100 ....

Figure 3
Extendible Hashing Tree
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11EL 12
15

18

Values in root node are implied by having pointers.

Values in leaf nodes are maintained by turning on appropriate
bit in node.

j

tI
!I

dr

Figure 4
Radix bit map after searching Figure ?

for 28 < x < 62
(assume S entries-per node)
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Node 1

N ot Shown

Not Shown

?-0-8 Tree
Figture S
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Number of 1/0 1/0
Variables Behavior Behavior

for for
Retrieval Modification

B-tree ilog log
(worst case) (worst case)

Extendible 2 log
Hash ing (worst case) (expected)

Radix Bit r (chosen as r log r log
Mapping result of (if clustered (worst case)

Using query) in records
B-treesreferenced)

K-0-B r (chosen log log
a priori) (expected) (if not too

dynamic)

Figure 6
Comparison of Methods
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Leonard J. Bass

AN EXPERIMENIAL EVALUATION OF THE FRAME MEMORY
MODEL OF A DATA BASE STRUCTURE

ABSTRACT

Frame memory is an analytic model of a data base access

method. This model enables the prediction of access

performance measures in terms of user behavior parameters.

This Is an important aspect of the automatic generation of date

structures.

In this study, a version of frame memory was implemented

and then a simulation study was performed to validate the

predictions of the analytic model against the implementation.

The model yielded good predictions (less than 101 error)

for most of the cases tested. The assumptions under which the

analytic results were derived were violated-during a portion of

the simulation to test the robustness of the model and again,

the analytic model yielded good predictions.
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AN EXPERIMENTAL EVALUATION OF THE FRAME MEMORY

MODEL OF A DATA BASE STRUCTURE

A desirable goal of data base research is' the automatic

generation of data base structures. A designer would specify

some limited number of characteristics of the data and would

have automatically returned the data structures, the access

items, an-d the access paths. A step in the direction of that

goal would be for the designer to furnish usage information and

a proposed storage structure, and to have returned the expected

response parameters. The frame- memory model of storage

structure has been proposed as a mechanism for predicting

system response as a function of usage and structural

information. In this study,' we report on an experimental

validation effort for frame memory,

Most attempts at automatic design involve the following

steps:

1. Determine how the users of the file system are planning

to use the system. This provides the necessary input

f or the automatic design system. Usage is defined by

the different 'types of records in the system, their

lengths and fields, plus the expected frequencies of

additions, deletions, mo dificatlops, and retrievals to

records and subsets of'records in the file.
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2. Select a set of storage structures f or the records

based oni usage patterns defined, in step. I.

3. Evaluate how this set of storage structures perform in

the anticipated environment. This evaluation must take

into account the change that the storage structures

will'undergo due to maintenance.

4. Assign a rating to the *set of storage' structures based

on this evaluation. This rating will determine whether

or not the set of structures will be considered further

as a possible design choice.

5. Inform the designer as to the set of structures which

have received the best evaluations.

Frame Memory

We are Interested here in what is involved In step 3 of the

design process. This stop is complex partially because the

amount of time needed to retrieve data from a storage structure

rarely remains constant throughout the life of the storage

structure.

March (MAR78) has proposed that step 3 of the design

process be divided into two steps as follows:

3a. Compute the average time to perform fundamental

* operations on the storage structure, taking into

account the effects -of updates to the storage

structure. Fundamental operations Include reading a

logical block, scanning a logical block of records for

a particular record, directly accessing a record, and

writing a logical block.
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3b. Use inf ormation f rom step 3a to calculate the average

time to perform an operation of interest) which may

involve a number of fundamental operations. For

example, the operation of adding a record to a data

structure can involve first the operation of reading in

the logical block which will contain the record and

then writing the updated logical block.

March proposed a model of secondary memory which he called

frame memory. He also analyzed the cost of using this model to

implement retrievals and modifications to a data base. The

designer would specify data structure and retrieval

requirements in terms of the frame memory. The cost of

satisfying these requirements would be calculated and reported

to the designer. The designer could then choose the best data

structures.

This makes sense only if the equations used to predict the

performance are correct and there is an implementation of frame

memory so that the designer can then use this implementation to

actually access the data structures created.

This provides the motivation for the study reported here.

An implementation of frame memory was done and then this

implementation was tested to see if the analysis yielded

correct predictions. Some of the assumptions within' which the

analysis was done were violated to test the dependency of the

analysis on those assumptions.

The results indicate that the predictions were close to

experimental results for almost all cases.
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From a user's perspective, frame memory partitions

secondary memory into contiguous and directly accessible areas

of storage called frames. A frame is the logical unit of data

transferred between main and secondary memory. Information is

maintained in contiguous areas within frames called frame

records. Figure 1 gives a user perspective of a frame memory.

Frames have four essential functional characteristics:

1. Directly accessible records. As each new, possibly

variable length, record is stored in a frame it is

assigned a local identifier called a (frame relative

record) token. The association between the record and

this token- is unaffected by subsequent frame storage

and maintenance operations.

2. Sequentially accessible records r Once a frame is

transferred to main memory its records may be

sequentially referenced in either their physical order

-or in a user constructed logical order termed the

(frame referencing) stream (Figure 2).

3. Fram~e elasticity - A frame is capable of stretching to

accommodate arbitrary growth. This is the way in which

maintenance operations which change the number or size

of records are handled in this model. Frame growth (or

shrinkage) has no direct af fect. on other frame

functions but is reflected, indirectly in frame

performance charo~cteristics (Figure 3).
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4. Record stream maneuverability - The inter-record

structure of the frame reference stream is maintained.

by the frame memory and may be dynamically modified by

a frame user.

Three implementation questions arise:

1. What type of structure will support frame expansion

(function 3)?

2. What type of structure will be used to maintain the

internal order of frame records within a frame

(functions 2,4)?

3. What types of structure will be used to maintain

tokens for records within a frame (function 1)?

The implementation wa's subject to. the constraint that it

must conform to the. basic assumptions that March used in

analyzing his model of frame memory. The fundamental data

structure that was used to support the frame expansion function

was. a chained overflow structure. This allows the user to

perceive the frame as expandable while the frame memory

implementations actually decide how to handle the expansion.

A fixed amount of space is initi ally allocated in secondary

storage for each frame. This initial allocation is called a

prime frame and the area of secondary storage in which prime

frames are allocated is called the primary data area. The

primary data area spans a number of cylinders of a disk.

Within each of these cylinders a certain percentage of space is

set aside for the primary data area. The remaining space is

used for frame expansion and is called the local overflow
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area. Records are stored in a prime frame until the space

allocated to the prime frame is exhausted at which time an

additional allocation of secondary storage space called a frame

extent is made. There are two types of frame extents - local

extents and global extents. A local extent exists in the same

cylinder as the prime frame it is assigned to and is allocated

from the local overflow area. A global extent exists in a

global overflow area which is separate from the primary data

area. Figure 4 depicts the relation betwen these frame

components and cylinders. Since the global overflow area is

separate from the prime data area, the head of the disk must be

moved and hence access to it is more expensive. A local extent

will always be used if there is. space available within the

local overflow area.

Frame extent allocations (either local or global) can be

either fixed or variable. A fixed extent is generally capable

of holding several records whereas a variable extent is only

large enough to store the record which caused the extent to be

allocated.

Once an extent has been allocated it is necessary to

associate it with the prime frame being extended. This is done

by maintaining an extent index in the prime frame which points

to each extent associated with the prime frame. Figure 4

illustrates this method.

The expansion structure which was used has fixed length

extents and an extent index. Although an extent index uses

some space in a prime frame, the amount of space is usually
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small compared to the size of records stored in the frame and

an index has the advantage of locating any extent in only one

access. .Fixed length extents may waste space if variable

length records are used. They do reduce the number of extents

needed, however, which is desirable if an extent !ndex is used.

Next, the maintenance of the logical frame stream will be

discussed. This is basically a determination of how the

concept of "next record" will be implemented. The next record

is the one which would be physically contiguous to the current

record if all of the 'records of the frame were contiguous. We

rse an indexed mechanism for maintaining tokens. That is, a
pointer is maintained for each frame record; a token is a

relative pointer count from the beginning of the Index.

In review, the implementation of a frame memory which is

used in thi's research has the following characteristics:

1. Extents are fixed length and maintained by an index

stored on the prime frame.

2. The logical frame stream is maintained by address

sequential connections (i.e., the physical order of the

records correspond to the logical order).

3. Frame record tokens are maintained by a token index

stored in the prime frame.

This implementation has been chosen for the test system for

two reasons:

1. The prediction of its performance measures Involves a

complex analysis. The purpose of this implementation

is to verify the correctness of March's analysis of
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frame memory performance, hence, it is appropriate to

choose an Implementation which is difficult to analyze.

2. Other researchers have used a similar implementation

for experimental relational data base management

systems (ST076). This is a situation, therefore, in

which automatic data base design research may find a

valuable application in the future.

March analyzed frame memory in terms of two types of

parameters: usage and device. The usage parameters specify

the characteristics of how the frame is to be used. March

Proposed the following usage parameters for his frame memory:

NR - the number of records initially loaded into the

memory.

LR - the average length (characters) of a stored

record. Records may be of variable length.

NADD - the number of additions per time period.

NOEL - the number of deletions per time period.

RINT -

the reorganization interyal. This is the time period at the

end of which the frame memory will be taken off line and all

extents will be incorporated into prime frames. This usually

happens when performance of the frame memory has deteriorated

significantly due to update generated overflow chains. All

performance measures are averages over this interval. This

measurement standard is inspired by the idea that the best file

organization Is the one with the maximum average performance

over its lifetime.



Some of his device parameters are:

TLOC - average disk latency time.

TRAN - the average disk seek time.

TFRTE - the data transfer rate between main memory and

disk storage.

MLMB - the size of a track (bytes) on the disk used to

store the frame memory.

LSZE - the amount of data storable in a cylinder.

Other usage parameters (those, connected to the device

usage):

PALF - the Primary area load factor. This is the

percentage of each cylinder that is used for

prime frames. The remaining space on. the

cylinder Is used for the local overflow area.

FMLF -the frame memory load factor; the proportion of

the space allocated to prime frames that is

required to hold initially loaded data. If this

is less than one, then each prime frame has some

free space to use before allocating an extent.

FRAE -the length of a frame extent.

Figure 5 illustrates the mapping of an. extended frame into

physical storage and illustrates parameters FMLF and FRAE.

March analyzed ten different performance measures. We

focus on:
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1) FFPHY -the average time to retrieve a full frame in
physical stream order. A full frame consists of

a prime- frame and whatever extents have been
generated for it.

2) FRTOK - the average time to retrieve a frame record by
it's token.

The experiments we performed were intended for two

purposes. First we validated March's analysis. by using the
assumptions he made in doing the analysis. Secondly, we

violated his assumptions to explore the limitations of the
analysis. In general, the results of the experiments showed

the robustness of his equations without regard for whether the

assumptions were maintained.

Six fundamental assumptions regarding' the chara cteristics

and use of the frame memory were incorporated by March into his

equations. These assumptions are:

1. March assumes only the most primitive type *of

buffering. Only one prime frame or one extent can be In main
memory at a time and the current contents of the buffer aren't
checked before doing I/O. For instance, in the evaluation of
the time it takes to read a frame in stream order,, It is
assumed that the frame has to be fetched from the disk. In a

more realistic buffering scheme, there is the possibility that

the frame is already in core and hence no 1/O would be

necessary to fetch it.

1 8-10



This assumption is equivalent to the one that no frame in

the memory sustains consecutive additions or deletions of

records. That-is, each addition or deletion operation involves

a frame different from the one used in the preceding

operation. We followed this assumption in 'the experiments.

2. The amount of disk storage space needed for extent and

token indices is small ( 10 percent) compared to the storage

used for frame records. March ignores the effect of overhead

in several of his equations. There are many situations in

which this assumption is questionable. For instance, if frame

records are only ten characters long then overhead may consume

twenty to twenty five percent of the storage used for the

table: hence, the percentage of overhead is a, function of the

record length of a frame record and the length of a system

pointer. Both of these are implementation parameters. The

length of a system pointer 'is increased (thereby increasing the

overhead percentage) in the experiment which tests the affect

of altering this assumption.

3. Maintenance operations (addition, deletion, and

*modification) are uniformly distributed over the set of prime

frames. This is a key assumption which has many exceptions.

For instance, it has been observed that in many data base

systems twenty percent of the records are involved in eighty

percent of the transactions on the data base. We tested the

effect of this assumption in one of the experiments.



4. The storage device containing the frame memory is

dedicated to only one user. In other words, there is no

concurrent use of the frame memory by two or more users and t he

frame memory storage device 'xperiences no activity other than

that initiated by the frame memory user. It is expected that

future models of a fr ame memory will allow more than one user

since co ncurre'nt use of a data base is one of the prime

motivations for the development of data base management

systems. A multiuser environment is approximated by randomly

changing the position of the disk head during the processing of

the frame memory updates and retrievals. There are three ways

in which the head can move corresponding to three different

usage situations. First, it has not moved since the last time

that a particular user' fetched something from the. frame

memory. Secondly, it has moved but has stayed-within the frame

memory data set. This happens when two or more users are

concurrently using the frame memory. Third, it has moved

outside the frame memory data set. This movement would be

caused by a user accessing a data set other than the frame

memory data set. In the experiment testing the impact of many

users it Is assumed that 50 percent of the time the head

doesn't move and 50 percent of the time it moves within the

frame memory data set. The frame memory is assumed to occupy

the entire disk so there is no movement outside the frame

memory.
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5. The rate of maintenance and retrieval activity is

linear. In other words, there are no flurries of maintenance
activity followed by lulls of no activity. Also, the update

operations are dispersed uniformly. That is, there is not a

batch of additions followed by a batch of deletions. The

experiments that were performed adhere to this assumption.

6. The degradation of the frame memory is a function of

the difference between the number of additions and the number

of deletions and does not depend on the actual number of

additions or deletions. That is, two hundred additions and no

deletions cause the same degradation as four hundred additions

and two hundred deletions. This assumption is implicit in the

experiments performed since in all experiments only additions

are made to the frame memory.

Measurement Techniques

For each of his performance measures, March calculates a

value at "steady state". He defines steady state as the time

at which the number of records initially loaded into the frame

has been doubled. He assumes his performance measures qegiade

linearly from an initial value to the value at steady state.

He calculates the performance measures at steady state as a

function of physical and usage parameters such as average

access time and number of global extents generated.

As an experiment proceeded the physical and usage

parameters needed by the predictive equations were gathered by

the implementation. These were the values used in calculating{ 8-13



the predicted values. The performance measures were also

measured during the course of an experiment. This provides

measurement versus Predicted performance from the start of an

experiment to the end of the experiment.

The performance measures taken during the course of the

experiment (average time to read all records in token order and

average time to retrieve a token) were assumed to have been

modified in an interval only by the records actually added

during that interval. Thus, the calculations for the

performance measures were done with each addition by adding an

incremented value (the time to access the record just added

either in logical order or alone) to a running total. This

enabled the calculation of average values without actually

having to read all of the records.

Since the predicted values were based on actual physical

and usage parameters, any dependency upon the method of

estimating these values were eliminated from the experiments.

This methodology provided a means for testing .the

prediction equations while still enabling variations in some of

the fundamental assumptions upon which the predictions were

based.

Experiments

Six experiments were performed. Table i lists the values

of the parameters that were varied for each experiment. A

brief rationale is now given for the choice of experiments.
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TABLE 1 - PARAMETERS OF EXPERIMENTS

E# DIST SIZE EPF NADD NOEL PALF USERS LP

1 U 160 5 200 0 0.85 one 2

2 U 80 10 200 0 1.00 one 2

3 U 400 2 200 0 1.00 one 2

4 U 160 5 200 0 0.85 one 2

5 U 160 5 200 0 0.85 one 10

6 U 160 5 200 0 0.85 many 2

The meaning of the parameter mnemonics are:

E# - experiment number

DIST - the distribution used for selecting frames for updates.

Here U means uniform distribution and N normal

distribution.

SIZE - the size of an extent allocation

EPF - the number of extent sized blocks in a prime frame

NADD - the number of additions per unit time interval

NOEL - the number of deletions per unit time interval

PALF - percentage of a cylinder used for prime frames

USERS - the number of users competing for access to the frame

memory

LP - the length of a system pointer (in bytes)
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Experiments 1-3 adhere to all of March's assumptions and

are a test for fundamental errors in his equations. Experiment

1 is run with a frame. memory. containing one local extent for

each-frame. Extents can contain two records and at load time a

Prime frame contains nine records. Experiment 2 uses a frame

memory with no local extents. Each extent can hold only one

record and as before the prime frame is big enough to hold nine

records. Experiment 3 has the same conditions as Experiment 2

except that an extent can contain four records.

The remaining experiments test the effect of altering the

assumptions which March used for his analysis.

Experiment 4 uses a normal distribution to determine which

frames get updates (assumption 3). The frame memory used has

local extents (one per prime frame) and each extent can contain

two records.

Experiment 5 uses a large value for the length of a system

pointer in order to make the overhead needed for each record

approximately 10 percent of the record length (assumption 2).

The frame memory used has local extents (one per prime frame)

and each extent can contain two records.

Experiment 6 tests the effect of other users competing for

use of the frame memory (assumption 4). The frame memory used

has no local extents and each extent can contain only one

record.

The following parameters were held constant for all of the

experiments:
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1) (LOGOVHD) The track size of the logical frame memory

device was 3170 bytes.

2) (LOGOVHD) No overhead is needed for a block on the

logical frame device.

3) (LOGTPC) There are 12 tracks per logical cylinder.

4) (TCYLS) The frame memory has 200 cylinders.

5) (PHYMLMB) A physical track can contain 19254 bytes.

6) (PHYOVHD) The overhead for a physical block is 135

bytes.

7) (FMLF) Each frame was initially completely filled

with frame records.

8) (TLOC) The disk latency time for the logical frame

memory device was 36.3 milliseconds.

9) (ACCFUNC) Figure 6 illustrates the seek time function

used for the logical frame memory device.

10) (TEST) The frame memory operated in test mode.

11) (NUMFRMS) The number of frames is 1800.

12) (NR) The number of records initially loaded is

16200.

13) (RINT) steady state is defined to occur after 81 unit

time intervals. This is the time when the

size of the file has doubled. This is the

criteria for steady state that was used by

March.

14. (NUMTRKS) The physical data set supporting the frame

memory uses 42 tracks.
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Results

The results of the experiments are summarized in Table 2

and graphically depicted in Figures 7 - 8.

TABLE 2 - PERCENT-OF-ERROR STATISTICS

FFPHY

EXP MEAN STO MAX MIN

1 12.83 21.51 20.76 0.68

2 6.62 13.37 10.88 0.15

3 24.13 59.17 35.39 8.93

4 6.65 2.61 9.06 0.44

5 5.78 4.68 7.45 0.38

6 3.28 2.35 5.04 0.05

FRTOK

EXP MEAN STD MAX MIN

1 4.44 1.34 5.34 0.67

2 10.48 0.64 12.97 9.55

3 6.04 3.66 7.50 0.26

4 8.18 3.93 9.87 0.62

5 7.59 3.32 8.52 0.26

6 6.10 0.55 6.85 2.93
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A brief overview of the results will be presented first

followed by a more detailed analysis. A predicted value within

ten percent of the observed one is considered a good

Prediction. Of course, more precise predictions are desirable

but for the current state of the art in automatic data base

design, the ten percent error range will probably be accurate

enough. Each performance measure will be discussed separately.

1. Average time to retrieve a full frame in physical order

(FFPHY).

Experiments 1, 4, and 5 are all performed on equivalent

frame memories (i.e., local extents are available ari two

records can fit on an extent). Experiment 1 uses all of

March's assumptions and the observed value of FFPHY is, on the

average, within 12.83 percent of the predicted value. Changing

the assumptions of small overhead per record (experiment 4) and

a uniform distribution of updates (experiment 5) reduces the

average error by about 50 percent in both cases. Experiments 2

and 6 are also run on equivaleant frame memories (no local

extents and one record per extent). For both the predicted

value is well within 10 percent of the observed one.

Experiment 3 produced a large discrepancy between the predicted

and observed values (i.e., 24.13 percent).

2. Average time to retrieve frame by token (FRTOK)

All experiments but one produced observed values within 10

percent of the predicted values of FRTOK. The' exception was

experiment 2 for which the average percent of error was 10.48
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percent. In all cases the observed value was higher than the

predicted one.

In his analysis, March first computes averages for

performance degradation at what he calls sready state time.

This is merely the number of unit time intervals required to

double the number of records initially loaded In the frame

memory. The degradation at steady state for a performance

measure is denoted by DS(*measure).

OS(*FFPHY) = ANEXS * ATRES

DS(*FRTOK) = FVTKS * ATRES

where ANEXS is the average number of extents per frame at

steady state time. ATRES is the average time to read an extent

at steady state. FVTKS is the probability, at steady state

time, that if a frame has extents then the desired record is in

an extent.

Table 3 contains the analytical and observed values of

ANEXS and FVTKS. In general, there is a good agreement between

the observed and predicted values. An exception is experiment

5 (large system pointer overhead) for which there is not good

agreement for either . Table 3 also contains a breakdown of

the average time to read an extent into two different kinds of

averages. The first average (AVGE) is the average time to read

an extent given that the head is positioned at the cylinder

containing the extent (or prime frame) which immediately

precedes it in the chain of extents attached to the prime
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frame. This is the average read time that is expected when a

frame is read or scanned. The second average (AVGD) is the

average time to read an extent giver that the head is

positioned at the cylinder containing the prime frame to which

the extent belongs. This is the average read time for extents

when records are directly accessed. In general, AVGE is less

than AVGD since global extents may occupy the same cylinder or

cylinders which are close to one another. Therefore, it takes

less time to fetch an extent in the extent chain once the head

is positioned in the global extent area than it does to fetch

the same extent from the prime frame. March does not

distinguish between AVGE and AVGD but calculates one average,

ATRES, which is a function of the time to access a local extent

and the time to access a global extent. He assumes that the

time to access a global extent is TRAN (also listed in Table

3). For these experiments TRAN is the observed value for all

random accesses (including prime frames) over the steady state

time interval.
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TABLE 3

PREDICTED AND OBSERVED PERFORMANCE MEASURE VARIABLES

OBS PRE PRE

Ef ANEXS ANEXS TRAN AVGE AVGD ATRES

1 4.80 4.76 86.7 71.3 88.5 76.7

2 9.54 9.03 79.7 67.3 102.0 80.3

3 2.20 2.20 94.8 94.9 103.0 95.5

A 4.89 4.76 80.8 67.7 91.6 72.1

5 5.58 4.76 86.3 71.4 91.7 77.4

6 9.54 9.03 87.5 81.8 97.9 88.2

Column headers are: (all averages are state averages at steady

state)

E# - experiment number

PRE - abbreviation for predicted

06S - abbreviation for observed

ANEXS - the average number of extents per frame

TRAN - the average time to do a random access

AVGE - the average time to read an extent from an extent chain

AVGD - the average time to read an extent from a prime frame

ATRES - overall average time to read an extent

VTK - the probability that a record is in an extent

II
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In most cases the discrepancies can be explained by

observing the behavior of the variables which March used in the

calculation of the performance measure under discussion. For

this purpose, graphs have been provided which map the behavior

FVTK (FVTKS is the value of FVTK at steady state) (Figure 9)

AVGE and AVGD in Figure 10 and ANEX (ANEXS is the value of ANEX

at steady state) in Figure 11.

FFPHY fared so poorly in experiment 3 primarily because of

the behavior of the variable ANEX as shown in Figure 11. The

rapid acquisition of extents at the beginning of the experiment

introduced much more degradation than at that stage than

predicted by March's analysis. In our experiments, the first

update to a frame always causes an extent to be allocated.

Hence, at the beginning of experiment 3 the chances of an

extent being allocated is very great. Once a frame gets an

extent, however, it does not need another until four additions

have been made to it since each extent can contain four

records. The same phenomenon can be observed in the ANEX curve

* 2for experiment 1. It is not as pronounced since each extent

can contain only two records.

The variable ATRES also affects the behavior of the

performance measure FFPHY. As mentioned earlier, AVGE is the

average time to read an extent when extents are fetched

sequentially in chains. Therefore, the use of AVGE in the

equation for FFPHY is more accurate than the use of ATRES. The

AVGE curve (Figure 10) for experiment 3 indicates that the

value of AVGE remains fairly constant and is close to AVGD (the

8-23

- r



average time to fetch an extent from a prime frame). This is

because extent chains tend to be short (since each extent can

hold four records) and hence most of the time to fetch a chain

is represented in the fetch of the first extent which is a

direct access of an extent (AVGD). Under these circumstances

the theoretical value of ATRES will be close to AVGE and will

be a good estimation of it (compare AVGE and AVGD in Table 3).

Since ATRES is accurate it must be ANEXS which causes the

inaccuracy of the predictions of FFPHY in experiment 3.

The AVGE curve for experiment 1 is more interesting. Here

there is a sharp increase in the average time to read an extent

at the beginning of the experiment. This increase is due to

the fact that local extents are allocated at the beginning and

these can be accessed quickly. As the local extent areas

become full, global extents are allocated and the average time

to read an extent increases. March's ATRES variable does not

capture this behavior and tends to be higher than AVGE (much

higher at the beginning of the experiment).

The AVGE curve for experiment 2 shows a decrease in the

average time to read an extent as the experiment progresses.

This is due to the fact that no local extents are available and

as the extent chains grow longer (and they will since extents

can contain only one record) the time to move from one global

extent to another in the chain begins to have a greater affect

on the average time to read an extent. In spite of this

decrease in the value of AVGE, the value of FFPHY is predicted

closely in experiment 2. This is because initially ATRES is
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close to AVGE but becomes a poorer estimate as time passes.

But the degradation at the beginning of the experiment has a

greater effect on an interval average than degradation that

occurs later. Hence, March'-s analysis predicts the early state

average degradation well for experiment 2 and this tends to

compensate for later poorer predictions when the interval

average is calculated. In contrast, for experiment 1 the

predicted early degradation is high and tnis makes all

predicted interval averages high..

The AVGE curves for experiments 4 and 5 exhibit the same

behavior as the one for experiment 1. However, the average

error in the predicted values for FFPHY for experiments 4 and 5

is lower than the error in experiment 1. This can be explained

as follows. For experiments 4 and 5 the local extents are

dissipated much more rapidly than in experiment 1. Experiment

4 concentrates most updates on only half the prime frame

cylinders, filling the local extent areas for these cylinders

quickly. In experiment 5, early overhead overflow causes the

allocation of extra extents. Hence the period of low

degradation at the beginning of the experiment is shorter and

doesn't have as much oi' an effect on the interval average.

For experiments 1, 4, and 5 the behavior of the AVGE

variajle Is most responsible for the inaccurate predictions of

FFPHY. This is particularly evident in experiment 5 where the

addition of extents to handle overhead overflow actually

improve the prediction of FFPHY (discussed above). Compare

this to the effect that uneven allocation had In experiment 3
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where ANEX was close to the analytic value throughout the

experiment.

The following insights can be gleaned from the preceding

discussion:

1. if AVGE is close to AVGD then March's ATRES will be a

good estimate of the average time to read an extent and

the behavior of the ANEX variable will determine the

average prediction error. This occurs when many

records can fit in an extent;

2. if AVGE and AVGO differ greatly then ATRES won't be a

good estimate of the average time to read an extent and

the effect of uneven and unexpected extent allocation

will be reduced. This occurs when extents can contain

only a few records;

3. if degradation Is predicted accurately at the beginning

of the experiment then the average percent of error

will be less than if early degradation is poorly

predicted.

The analysis of the behavior of the FRTOK performance

measure is much simpler. Most of the discrepancy between the

predicted and observed values appears to be caused by the

difference between AVGD and ATRES. Experiment 2, which

predicted FRTOK the worst (10.48 percent average error), was

the one for which there was the largest percent of error

between AVGO and ATRES at steady state (see Table 3).

Experiment 4 also had a large error between AVGD and ATRES but

* -i! this was compensated for somewhat by the fact that the predicted
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value of VTK was slightly lower than the observed value.

The fact that AVGD is always greater than ATRES is

compatible with the fact that the observed value of FRTOK is

always greater than the predicted value.

VTK, the proportion of records in extents, is a secondary

cause of error in the value of FRTOK. In the absence of any

overhead induced extents, It is equal to the function -

f(nadd) = nadd/(16200 + nadd)

where nadd is the number of additions and 16200 is the number

of records initially loaded. This is not linear but is nearly

so. Records that get pushed out of the prime frame by

expansion will raise the proportion of records in extents but

not enought to seriously effect the calculation of FRTOK. For

instance, the value of FRTOK in experiment 5 (overhead induced

overflow) has a 7.59 percent average error whereas experiment 1

(very little overhead induced overflow) has a 4.44 percent

average error.

Finally, a comment is made on the ability of March's

analysis to predict the performance of a frame memory which is

used concurrently by two or more users. The frame memory used

to test the effect of more than one user had no local extents

since the advantage of local extents is lost when the head may

move before the local extent is accessed. In our experiment,

additional users did not affect the number and distribution of

extents, they only affected the time to fetch an extent. Since

only global extents were used in the experiment, the average

time to access an extent (AVGD or AVGE) was close to the average
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time to do a random access (see Table 4.3). Since March has

TRAN as one of the parameters to his equations and assumes the

ATRES s TRAM if there are no local extents, his predictions

were not adversely affected by a multiuser environment in

experiment 6.

Conclusion

Given the assumptions made, March's analysis appears to

predict the performance of a frame memory satisfactorily (i.e.,

within 10 percent) for the use for which it was designed - as a

tool to aid in the development of automatic data base design

systems. Furthermore, his predictors are robust since we

altered several of the assumptions and still observed

satisfactory results from his analysis. This robustness is

achieved mainly by the judicious choice of one of the

parameters of the analysis. This parameter, TRAN, is the

average time to do a random access in the frame memory. Unlike

the other parameters used, TRAN is far from obvious and its

determination involves an insight into the performance

characteristcs of the frame memory whose performance is being

a analyzed.

The frame memories which failed to perform as predicted by

March's analysis were those which represented less than optimal

designs. One of them used small extents but had no local

extent areas thereby forcing any addition to the frame memory

to be stored in the global extent area. Another one used large
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extents resulting in a lot of unavailable free space and alsoI|
had no local extent areas. The frame memory which performed

best had medium sized extents and a local extent area.

March's analysis falters in the following situations:

1. If large extents are used, non-linear extent allocation

results, leading to non-linear degradation. March

assumes linear degradation.

2. When extents are in the global area, March's overall

estimate of the average time to read an extent is

incorrect. This occurs since during a frame read or

frame scan many extents in the global extent area are

close together thereby reducing the average time to

fetch the next extent.

3. The expansion of indices can push records out of the

prime frame into extents. This phenomenon produces a

large number of unexpected extents if the overhead per

record is greater than 10 percent. However, March's

analysis produced satisfactory results when the

overhead per record wa approximately 10 percent.

In summary, the more extents a frame has the more

inaccurate is March's estimate of the average time to read an

extent. The number of extents can be reduced only by making

extents larger, thereby causing a non-linear pattern of extent

allocations. This has been shown to invalidate March's

assumption of linear degradation. This situation is not as

hopeless as it might sound. A reasonably simple set of

heuristics could be developed to assure that the decisions
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affecting these areas result in good data base designs which
will be predicted accurately by March's frame memory analysis.

Directions for Further Research

March has demonstrated the usefulness of viewing the update

induced change of performance of a data base over time as the
sum of the measure of performance of the data base at load time

and a time related measure of performance degradation. His

model of frame memory fits this approach very well. Prime

frames represent initial or non-degraded performance and

extents represent degradation of performance. His assumption

of linear degradation was shown to cause problems. This

assumption would not be necessary if a non-linear degradation

function were developed for each performance measure. These

functions could be based on time and the number of records per

extent. Even greater precision could be achieved if the

effects of overhead expansion were considered and the

assumption that the size of records was large compared to the
overhead they require could be dropped. A more rigorous

analysis than the one we performed would be necessary for the
devlopment of the non-linear degradation functions.

March's analysis could be made more complete if it didn't
have to rely so heavily on the average time to do a random

access. Ideally, what would be supplied as a parameter is the
function which describes the time to move the disk head a given

number of cylinders. The average time to do a random access

could then be calculated as part of the analysis.'1 8-30
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A question which arises is whether more sophisticated data

structures (e.g., B-trees, differential files, etc.) are

amenable to analysis in terms of initial performance and some

timue related degradation of performance. If so, the structures

could be classified according to their degradation functions.

Finally, an investigation could be made into transporting

these ideas to fields other than data base management. In

particular, the field of software quality measurement is

Interested in the degradation of performance (and quality) of

programs caused by code changes. The work presented here has

offered a model of change related degradation. Can this model

be adapted so that is provides a useful way of analyzing

program quality?
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